Advertisement

Screening for heterotrophy in microalgae of various taxonomic positions and potential of mixotrophy for production of high-value compounds

  • Pavel PřibylEmail author
  • Vladislav Cepák
Article

Abstract

We tested 37 photoautotrophic microalgal strains of various taxonomic positions for their heterotrophic growth on glucose. We showed that facultative heterotrophy was quite common among certain groups of green algae (Chlorellales or Sphaeropleales) and of Xanthophyceae, whereas it was completely absent from Eustigmatophyceae. For the first time, we found heterotrophy in some members of green algae (Botryosphaerella sudetica, Bracteacoccus sp., Dictyosphaerium spp., Lemmermannia sp., Parachlorella kessleri). Of the tested facultative heterotrophs, three strains, Scenedesmus sp., Dictyosphaerium chlorelloides, and Tribonema aequale, were selected to investigate, in detail, their mixotrophic growth and production of specific metabolites, carotenoids, exopolysaccharides, and eicosapentaenoic acid, respectively. Among them only T. aequale showed significantly higher production of the target compound, eicosapentaenoic acid, under the mixotrophic cultivation mode than photoautotrophically. Together with the ease of biomass harvest, Tribonema microalgae are therefore proposed as a possible source of high-quality ω-3 polyunsaturated fatty acids.

Keywords

Eicosapentaenoic acid Heterotrophy Microalga Mixotrophy Tribonema 

Notes

Acknowledgements

We thank Markéta Fránková, Miloš Winkler, and students of the Bishop’s gymnasium in Brno, Czech Republic, for helping with the determination of algal species.

Funding information

This work was supported by the Technology Agency of the Czech Republic (grant numbers TE01020080 and TA03011027) and a long-term research development project of the Institute of Botany CAS (number RVO 67985939).

References

  1. Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. Appl Environ Microbiol 35:32–37PubMedPubMedCentralGoogle Scholar
  2. Avendano MD, Orús MI (1990) Nitrogen compounds in heterotrophic Scenedesmus quadricauda UAM 103. Phyton 51:95–98Google Scholar
  3. Beauclerk AAD, Smith AJ (1978) Transport of D-glucose and 3-O-methyl-D-glucose in cyanobacteria Aphanocapsa 6714 and Nostoc strain Mac. Eur J Biochem 82:187–197CrossRefGoogle Scholar
  4. Belcher JH, Fogg GE (1958) Studies on the growth of Xanthophyceae in pure culture. III. Tribonema aequale Pascher. Arch Mikrobiol 30:17–22CrossRefGoogle Scholar
  5. Belcher JH, Miller JDA (1960) Studies on the growth of Xanthophyceae in pure culture. IV. Nutritional types amongst the Xanthophyceae. Arch Mikrobiol 36:219–228CrossRefGoogle Scholar
  6. Benedict CR (1978) Nature of obligate photoautotrophy. Annu Rev Plant Physiol 29:67–93CrossRefGoogle Scholar
  7. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46CrossRefGoogle Scholar
  8. Casselton PJ (1966) Chemo-organotrophic growth of Xanthophyceae algae. New Phytol 65:134–140CrossRefGoogle Scholar
  9. Cepák V, Přibyl P, Kohoutková J, Kaštánek P (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol 26:181–190CrossRefGoogle Scholar
  10. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516CrossRefGoogle Scholar
  11. Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604CrossRefGoogle Scholar
  12. De Swaaf ME, Sijtsma L, Pronk JC (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672CrossRefGoogle Scholar
  13. Doucha J, Lívanský K (2012) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 24:35–43CrossRefGoogle Scholar
  14. Eliáš M, Amaral RF, Fawley KP, Fawley MW, Němcová Y, Neustupa J, Přibyl P, Santos LMA, Ševčíková T (2017) Eustigmatophyceae. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the protists. Springer, Cham, pp 367–406CrossRefGoogle Scholar
  15. Emerson R (1927) The effect of certain respiratory inhibitors on the respiration of Chlorella. J Gen Physiol 10:469–477CrossRefGoogle Scholar
  16. Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503CrossRefGoogle Scholar
  17. Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782CrossRefGoogle Scholar
  18. Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141CrossRefGoogle Scholar
  19. Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75CrossRefGoogle Scholar
  20. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638Google Scholar
  21. Halaj M, Paulovičová E, Paulovičová L, Jantová S, Cepák V, Lukavský J, Capek P (2018) Biopolymer of Dictyosphaerium chlorelloides - chemical characterization and biological effects. Int J Biol Macromol 113:1248–1257CrossRefGoogle Scholar
  22. Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka H (2001) Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol 13:395–402CrossRefGoogle Scholar
  23. Holm-Hansen O (1968) Ecology, physiology and biochemistry of blue-green algae. Annu Rev Microbiol 22:47–70CrossRefGoogle Scholar
  24. Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173CrossRefGoogle Scholar
  25. Kvíderová J, Lukavský J (2005) The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Arch Hydrobiol Algol Stud 118:127–140CrossRefGoogle Scholar
  26. Kyle DJ (2001) The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid, in: Omega-3 fatty acids. ACS Symp Ser 788:92–107CrossRefGoogle Scholar
  27. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  28. Lu CM, Rao K, Hall D, Vonshak A (2001) Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity. J Appl Phycol 13:517–522CrossRefGoogle Scholar
  29. Lynch DL, Fenwick MG, Hansen LO (1967) Heterotrophic nutrition in the genus Coelastrum Naeg. Trans Am Microsc Soc 86:499–502CrossRefGoogle Scholar
  30. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441CrossRefGoogle Scholar
  31. Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int 15:1–9CrossRefGoogle Scholar
  32. Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561CrossRefGoogle Scholar
  33. Přibyl P, Cepák V, Kaštánek P, Zachleder V (2015) Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res 11:22–27CrossRefGoogle Scholar
  34. Přibyl P, Pilný J, Cepák V, Kaštánek P (2016) The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res 16:69–75CrossRefGoogle Scholar
  35. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  36. Raboy B, Padan E (1978) Active transport of glucose and alpha-methylglucoside in cyanobacterium Plectonema boryanum. J Biol Chem 253:3287–3291PubMedGoogle Scholar
  37. Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q (2014) A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res 4:96–104CrossRefGoogle Scholar
  38. Staub R (1961) Ernährungsphysiologisch-autökologische Untersuchungen an der planktonischen Blaualge Oscillatoria rubescens DC. Schweiz Z Hydrol 23:82–198Google Scholar
  39. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077CrossRefGoogle Scholar
  40. Wen ZY, Chen F (2001) A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Appl Microbiol Biotechnol 57:316–322CrossRefGoogle Scholar
  41. Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352CrossRefGoogle Scholar
  42. Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18CrossRefGoogle Scholar
  43. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefGoogle Scholar
  44. Zhang CC, Jeanjean R, Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol Lett 161:285–292CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Phycology & Biorefinery Research Centre of Competence, Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic

Personalised recommendations