Advertisement

Combination of utilization of CO2 from flue gas of biomass power plant and medium recycling to enhance cost-effective Spirulina production

  • Huijun Cui
  • Zihan Yang
  • Zhe Lu
  • Qishuo Wang
  • Jin Liu
  • Lirong SongEmail author
Article

Abstract

Carbon dioxide (CO2) sequestration by microalgae has received widespread attention. Growth and biomass quality using flue gas, combined with medium recycling, were evaluated in this study. Results indicated that Spirulina maxima FACHB 438 can use flue gas from biomass power plant as sole carbon source. The final biomass of 26.30, 22.10, and 23.95 g in fresh medium (FM), recycled medium (RM), and recycled medium with activated carbon treatment (RM + AC) was harvested in flat-plate photobioreactors with 10 L working volume after 5 cycles, respectively. The mean specific growth rate and CO2 fixation rate did not differ significantly (p < 0.05), illustrating good growth performance in the three treatments. Activated carbon enhanced growth in RM + AC by 8.4% compared with RM. The quality of biomass in either FM or RM satisfies the Chinese standard for food/feed additives. This manner of mass culture reduced the cost of nutrients by up to 42%. Therefore, combination of CO2 sequestration from biomass power plant and medium recycling is demonstrated to be a new way to enhance the cost-effective Spirulina production.

Keywords

Spirulina Arthrospira Flue gas Medium recycling Biomass quality Cost-effective 

Notes

Acknowledgments

This work was supported by the China Agriculture Research System (CARS-50) and the Chinese Academy of Sciences (ZSSB-006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10811_2019_1736_MOESM1_ESM.pdf (273 kb)
Online resource 1 Fig. S1 Outdoor cultivation systems (PDF 273 kb)

References

  1. Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8:303–311CrossRefGoogle Scholar
  2. Binaghi L, Del Borghi A, Lodi A, Converti A, Del Borghi M (2003) Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem 38:1341–1346CrossRefGoogle Scholar
  3. Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135CrossRefGoogle Scholar
  4. Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  5. Bosma R, Miazek K, Willemsen SM, Vermuё MH, Wijffels RH (2008) Growth inhibition of Monodus subterraneus by free fatty acids. Biotechnol Bioen 101:1108–1114CrossRefGoogle Scholar
  6. BP (2017) BP statistical review of world energy. London, EnglandGoogle Scholar
  7. Cao SP, Zou T, Zhang PY, Han D, Jin JY, Liu HK, Yang YX, Zhu XM, Xie SQ (2018) Effects of dietary fishmeal replacement with Spirulina platensis on the growth, feed utilization, digestion and physiological parameters in juvenile gibel carp (Carassis auratus gibelio var. CAS III). Aquac Res 49:1320–1328CrossRefGoogle Scholar
  8. Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ben Ouada H, Nasri M, Jridi M (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol 105:1412–1420CrossRefGoogle Scholar
  9. China NDRC (2016) ‘13th Five-year’ planning for renewable energy development. Beijing, ChinaGoogle Scholar
  10. Cornet JF, Dussap CG, Cluzel P, Dubertret G (1992) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations. Biotechnol Bioeng 40:826–834CrossRefGoogle Scholar
  11. da Rosa GM, Moraes L, Cardias BB, de Souza M, Costa JAV (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol 192:321–327CrossRefGoogle Scholar
  12. de la Jara A, Ruano-Rodriguez C, Polifrone M, Assunçao P, Brito-Casillas Y, Wägner AM, Serra-Majem L (2018) Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. J Appl Phycol 30:2403–2423CrossRefGoogle Scholar
  13. Depraetere O, Pierre G, Noppe W, Vandamme D, Foubert I, Michaud P, Muylaert K (2015) Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Res 10:48–54CrossRefGoogle Scholar
  14. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185CrossRefGoogle Scholar
  15. Duarte JH, de Morais EG, Radmann EM, Vieira Costa JA (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol 234:472–475CrossRefGoogle Scholar
  16. Farooq W, Suh WI, Park MS, Yang JW (2015) Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol 184:73–81CrossRefGoogle Scholar
  17. García-García JD, Sánchez-Thomas R, Moreno-Sánchez R (2016) Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34:859–873CrossRefGoogle Scholar
  18. González-López CV, Cerón-García MC, Fernandez-Sevilla JM, González-Céspedes AM, Camacho-Rodriguez J, Molina-Grima E (2013) Medium recycling for Nannochloropsis gaditana cultures for aquaculture. Bioresour Technol 129:430–438CrossRefGoogle Scholar
  19. Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croué JP, Bourseau P (2013) The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresour Technol 132:285–292CrossRefGoogle Scholar
  20. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRefGoogle Scholar
  21. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  22. Huang J, Kang S, Wan M, Li Y, Qu X, Feg F, Wang J, Wang W, Shen G, Li W (2015) Numerical and experimental study on the performance of flat-plate photobioreactors with different inner structures for microalgae cultivation. J Appl Phycol 27:49–58CrossRefGoogle Scholar
  23. Hulatt CJ, Thomas DN (2010) Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresour Technol 101:8690–8697CrossRefGoogle Scholar
  24. Husic HD, Moroney JV, Tolbert NE (1987) The role of carbonic anhydrase in the inorganic carbon concentrating system of Chlamydomonas reinhardtii. Progr Photosynth Res 4:317–324Google Scholar
  25. Kalff J (2002) Limnology: inland water ecosystems. San Francisco, United StatesGoogle Scholar
  26. Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493CrossRefGoogle Scholar
  27. Lee JS, Lee JP (2003) Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng 8:354–359CrossRefGoogle Scholar
  28. Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Ohh SJ (2001) CO2 fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks. J Microbiol Biotechnol 11:772–775Google Scholar
  29. Li YG, Hu HJ, Zhang LJ, Chen ZX (1996) Studies on CO2 supply technique for Spirulina production. J Wuhan Bot Res 14:349–356Google Scholar
  30. Li TP, Xu G, Rong JF, Chen H, He CL, Giordano M, Wang Q (2016) The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J Plant Physiol 195:73–79CrossRefGoogle Scholar
  31. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592CrossRefGoogle Scholar
  32. Minjarez-Osorio C, Castillo-Alvarado S, Gatlin DM III, Lizett Gonzalez-Felix M, Perez-Velazquez M, Rossi W Jr (2016) Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): a comparative study. Aquaculture 453:122–129CrossRefGoogle Scholar
  33. Moheimani NR (2016) Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28:2139–2146CrossRefGoogle Scholar
  34. Morocho-Jácome AL, Mascioli GF, Sato S, de Carvalho JCM (2016) Evaluation of physicochemical treatment conditions for the reuse of a spent growth medium in Arthrospira platensis cultivation. Algal Res 13:159–166CrossRefGoogle Scholar
  35. Moroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119:9–16CrossRefGoogle Scholar
  36. Moroney JV, Husic HD, Tolbert NE (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79:177–183CrossRefGoogle Scholar
  37. Patel A, Mishra S, Pawar R, Ghosh PK (2005) Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40:248–255CrossRefGoogle Scholar
  38. Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158CrossRefGoogle Scholar
  39. Qiao C, Li SY (2013) Spirulina (Arthrospira) in alkaline lakes of the Erdos Plateau. Science Press, Beijing (in Chinese)Google Scholar
  40. Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Convers Manag 52:3132–3136CrossRefGoogle Scholar
  41. Razzak SA, Ali SAM, Hossain MM, deLasa H (2017) Biological CO2 fixation with production of microalgae in wastewater—a review. Renew Sust Energ Rev 76:379–390CrossRefGoogle Scholar
  42. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass-production of microalgae outdoors. J Appl Phycol 5:327–332CrossRefGoogle Scholar
  43. Rijstenbil JW (1989) Competitive interaction between Ditylum brightwellii and Skeletonema costatum by toxic metabolites. Neth J Sea Res 23:23–27CrossRefGoogle Scholar
  44. Rocha GS, Pinto FHV, Melao MGG, Lombardi AT (2015) Growing Scenedesmus quadricauda in used culture media: is it viable? J Appl Phycol 27:171–178CrossRefGoogle Scholar
  45. Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp mass cultivation. Biomol Eng 20:243–248CrossRefGoogle Scholar
  46. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39CrossRefGoogle Scholar
  47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  48. Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420CrossRefGoogle Scholar
  49. US DOE (2010) National algal biofuels technology roadmap. Maryland, U.S.Google Scholar
  50. Usui N, Ikenouchi M (1997) Biological CO2 fixation and utilization project by RITE. 1. Highly-effective photobioreactor system. Energy Convers Manag 38:S487–S492CrossRefGoogle Scholar
  51. Vaz BD, Costa JAV, de Morais MG (2016) CO2 biofixation by the cyanobacterium Spirulina sp LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl Biochem Biotechnol 178:418–429CrossRefGoogle Scholar
  52. Vonshak A, Laorawat S, Bunnag B, Tanticharoen M (2014) The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315CrossRefGoogle Scholar
  53. Yadav G, Karemore A, Dash SK, Sen R (2015) Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol 191:399–406CrossRefGoogle Scholar
  54. Zarrouk, C (1966) Contribution à l’étude d’une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima Geitler (Ph.D. thesis), University of ParisGoogle Scholar
  55. Zhang XZ, Lu ZY, Wang YF, Wensel P, Sommerfeld M, Hu Q (2016) Recycling Nannochloropsis oceanica culture media and growth inhibitors characterization. Algal Res 20:282–290CrossRefGoogle Scholar
  56. Zhao BT, Su YX, Zhang YX, Cui GM (2015) Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 89:347–357CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Huijun Cui
    • 1
    • 2
  • Zihan Yang
    • 1
    • 2
  • Zhe Lu
    • 1
    • 2
  • Qishuo Wang
    • 1
  • Jin Liu
    • 1
  • Lirong Song
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations