Community-level changes in periphytic biofilm caused by copper contamination

  • Mariana L. SousaEmail author
  • Fungyi Chow
  • Marcelo L. M. Pompêo


Periphyton has been recognized as an important element in aquatic food chains due to its role in primary production. More recently, it has been used as bioindicator of contamination in reservoirs since biofilm analysis can support in understanding the impacts of bottom-up contaminants to the reservoirs. Copper (Cu) is one of these pollutants which has been used as an algicide; it accumulates in the sediment and can be released to the water column, causing harm to various aquatic organisms, including the periphytic biofilm. In this work periphyton cultivated in the laboratory was exposed to copper, using concentrations from 0.013 to 0.15 mg Cu L−1 over 15 days under controlled conditions (temperature, light, and oxygenation). Different physical-chemical and ecological parameters were measured in order to describe the effects of Cu on the community, which included alterations in ash-free dry mass and chlorophyll concentration, as well as an earlier photosynthetically light saturation point. The results reflected different ecological behavior with modifications in the community composition and greater cyanobacteria dominance like abundance of species with mucilage as the Cu concentration increased. Furthermore, some species of diatoms were not found when the water was contaminated with Cu. This disturbance in the ecological composition of periphyton affects significantly the food chain due to the unpalatability of tolerant species and/or the bioaccumulation of Cu which may be transferred to other organisms potentially causing toxicity to primary consumers.


Bioindicator Metal Microalgae Microcosm Toxicity Water quality 



Special thanks to Cristiano Venícius de Matos Araújo (Instituto de Ciencias Marinas de Andalucía) for helpings us in revising this manuscript. Fungyi Chow thanks CNPq for the productivity fellowship (303937/2015-7).

Funding information

This work was supported by the scholarship CAPES (Finance code 001) and the FAPESP research grant (2014/22581-8).

Supplementary material

10811_2019_1734_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24.4 kb)


  1. ABNT (2018) Ecotoxicologia aquática - toxicidade crônica - método de ensaio com algas (Chlorophyceae) – technic normative NBR 12648:2018. Accessed on 1.5.2018
  2. Beghelli FGS, Rosa AH, Nishimura PY, Meirinho PA, Leonardi BF, Guiduce FS, Lopez-Doval JC, Pompêo M, Moschini-Carlos V (2015) Aplicações de sulfato de cobre no reservatório Guarapiranga: distribuição no meio e efeitos sobre a comunidade plantônica. In: Pompêo M, Moschini-Carlos V, Nishimura PH, Cardoso-Silva S, López-Doval JC (eds) Ecologia de reservatórios e interfaces, 1st edn. Universidade de São Paulo, São Paulo, pp 294–308Google Scholar
  3. Bicudo CEM (1990) Metodologia para o estudo qualitativo do perifíton. Acta Limnol Bras 3:447–491Google Scholar
  4. Bicudo CEM, Menezes M (2006) Gêneros de algas continentais no Brasil: guia para identificação e descrições. Rima, São CarlosGoogle Scholar
  5. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Asses 8:1003–1034CrossRefGoogle Scholar
  6. Bodini A, Bondavalli C, Rossetti G (2018) Ecological succession investigated through food-web flow network. In: Moore JC, Ruiter PC, McCann KS, Wolters V (eds) Adaptive food webs – stability and transitions on real model ecosystems. Cambridge University Press, Cambridge, pp 164–177Google Scholar
  7. Breault RF, Colman JA, Aiken GR, McKnight D (1996) Copper speciation and binding by organic matter in copper-contaminated streamwater. Environ Sci Technol 30:3477–3486CrossRefGoogle Scholar
  8. Burliga AL (2010) Abordagem de grupos funcionais em estudos do perifíton e fitoplâncton. In: Franceschini IM, Burliga AL, Reviers B, Prado JF, Rézig SH (eds) Algas: uma abordagem filogenética, taxonômica e ecológica, 2nd edn. Artmed, São Paulo, pp 234–258Google Scholar
  9. CETESB (2008) Relatório da qualidade da água no estado de São Paulo - 2007. Secretaria de Estado do Meio Ambiente, São PauloGoogle Scholar
  10. CONAMA (2016) Resolução 357. Accessed on 28.8.2016
  11. Devlin SP, Zanden MJV, Vadeboncoeur Y (2016) Littoral-benthic primary production estimates: sensitivity to simplifications with respect to periphyton productivity and basin morphometry. Limnol Oceanogr Meth 14:138–149CrossRefGoogle Scholar
  12. Downing AL, Brown BL, Leibold MA (2014) Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95:173–184CrossRefGoogle Scholar
  13. Dunck B, Rodrigues L, Bicudo DC (2015) Functional diversity and functional traits of periphytic algae during a short-term successional process in a neotropical floodplain lake. Braz J Biol 75:587–597CrossRefGoogle Scholar
  14. Felisberto SA, Murakami EA (2013) Papel do perifíton na ciclagem de nutrientes e na teia trófica. In: Schwarzbold A, Burliga AL, Torgan LC (Eds). Ecologia do perifíton, Rima, São Carlos, pp 23–44Google Scholar
  15. Felisberto SA, Rodrigues L (2012) Dinâmica sucessional de comunidade de algas perifíticas em um ecossistema lótico subtropical. Rodriguésia 63:463–473CrossRefGoogle Scholar
  16. Fernández C, Estrada V, Parodi ER (2015) Factors triggering cyanobacteria dominance and succession during blooms in a hypereutrophic drinking water supply. Res Water Air Soil Pollut 226:73CrossRefGoogle Scholar
  17. Franceschini IM (2013) Chave de identificação dos gêneros de algas (exceto Bacillariophyceae) comumente encontrados no perifíton e metafíton de ambientes aquáticos continentais. In: Schwarzbold A, Burliga AL, Torgan LC (Eds). Ecologia do perifíton, Rima, São Carlos, pp 245–266Google Scholar
  18. Franceschini IM, Prado JF, Burliga AL (2010) Diversidade. In: Franceschini IM, Burliga AL, Reviers B, Prado JF, Rézig SH (eds) Algas: uma abordagem filogenética taxonômica e ecológica, 2nd edn. Artmed, São Paulo, pp 73–213Google Scholar
  19. Gaiser EE, Anderson EP, Castañeda-Moya E, Collado-Vides L, Fourqurean JW, Heithaus MR, Jaffe R, Lagomasino D, Oehm NJ, Price RM, Rivera-Monroy VH, Chowdary RR, Troxler TG (2015) New perspectives on an iconic landscape from comparative international long-term ecological research. Ecosphere 6:1–18CrossRefGoogle Scholar
  20. Garcı́a-Villada L, Rico M, Altamirano M, Sánchez-Martı́na L, López-Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res 38:2207–2213CrossRefGoogle Scholar
  21. Gorelova OA, Baulina OI, Solovchenko AE, Chekanov KA, Chivkunova OB, Fedorenko TA, Lobakova ES (2015) Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates. Protoplasma 252:489–503CrossRefGoogle Scholar
  22. Hamada YZ, Cox R, Hamada H (2015) Cu2+-Citrate dimer complexes in aqueous solutions. J Basic Appl Sci 11:583–589CrossRefGoogle Scholar
  23. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9Google Scholar
  24. Hegewald H, Braband A (2017) A taxonomic revision of Desmodesmus serie Desmodesmus (Sphaeropleales, Scenedesmaceae). Fottea 17:191–208CrossRefGoogle Scholar
  25. Heinz Walz Gmbh (2003) Phytoplankton Analyzer PHYTO-PAM and Phyto-Win Software V 1.45 system components and principles of operation. Heinz Walz Gmbh. Accessed on 30.5.18
  26. Hill W (1996) Effects of light. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic systems. Academic Press, London, pp 121–148CrossRefGoogle Scholar
  27. Hoang TC, Pryor RL, Rand GM, Frakes RA (2011) Bioaccumulation and toxicity of copper in outdoor freshwater microcosms. Ecotox Environ Safe 74:1011–1020CrossRefGoogle Scholar
  28. Hommen U, Knopf B, Rüdel H, Schäfers C, Garman ER, Schamphelaere K, Schlekat C (2016) A microcosm study to support aquatic risk assessment of nickel: community-level effects and comparison with bioavailability-normalized species sensitivity distributions. Environ Toxicol Chem 35:1172–1182CrossRefGoogle Scholar
  29. Kabra K, Chaudhary R, Sawhney RL (2008) Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): speciation modeling of metal–citric acid complexes. J Hazard Mater 155:424–432CrossRefGoogle Scholar
  30. Karlsson J, Byströn P, Ask J, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–510CrossRefGoogle Scholar
  31. Kumar KS, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH (2014) Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotox Environ Safe 104:51–71CrossRefGoogle Scholar
  32. Lambert AS, Dabrin A, Morin S, Gahou J, Foulquier A, Coquery M, Pesce S (2016) Temperature modulates phototrophic periphyton response to chronic copper exposure. Environ Pollut 208:821–829CrossRefGoogle Scholar
  33. Lamparelli MC, Tucci A, Sant’Anna C, Pires DA, Lerche LHM, Carvalho MC, Rosal C (2014) Cianobactérias da região do Alto Tietê. CETESB, São PauloGoogle Scholar
  34. Lan M, Fengwu W, Yuanchun Y, Junzhuo L, Yonghong W (2018) Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Bioresour Technol 248:61–67CrossRefGoogle Scholar
  35. Leal PR (2018) Impact of copper sulfate application at an urban Brazilian reservoir: a geostatistical and ecotoxicological approach. Sci Total Environ 618:621–634CrossRefGoogle Scholar
  36. Leguay S, Lavoie I, Levy JL, Fortin C (2016) Using biofilms for monitoring metal contamination in lotic ecosystems. Environ Toxicol Chem 35:1489–1501CrossRefGoogle Scholar
  37. Lei X, Cruz JA, Savage LJ, Kramer DM, Chen J (2015) Plant photosynthesis phenomics data quality control. Bioinformatics 31:1796–1804CrossRefGoogle Scholar
  38. Lopez AR, Funk DH, Buchwalter DB (2017) Arsenic(V) bioconcentration kinetics in freshwater macroinvertebrates and periphyton is influenced by pH. Environ Pollut 224:82–88CrossRefGoogle Scholar
  39. Ludwig TAV, Tremarin PI (2013) Chave de identificação dos gêneros de diatomáceas (Diatomae-Ochrophyta) comumente encontrados no perifíton e metafíton de ambientes aquáticos continentais. In: Schwarzbold A, Burliga AL, Torgan LC (Eds). Ecologia do Perifíton, Rima, São Carlos: pp. 267–330Google Scholar
  40. Oliver SL, Ribeiro H (2014) Variabilidade climática e qualidade de água no reservatório de Guarapiranga. Estud Avan 28:95–128CrossRefGoogle Scholar
  41. Pompêo M, Padial PR, Mariani CF, Cardoso-Silva S, Moschini-Carlos V, Silva DCVR, Paiva TCB, Brandimarte AL (2013) Biodisponibilidade de metais no sedimento de um reservatório tropical urbano (reservatório Guarapiranga – São Paulo (SP), Brasil): há toxicidade potencial e heterogeneidade espacial? Geochim Bras 27:104–119CrossRefGoogle Scholar
  42. Potvin C (2001) ANOVA: experimental layout and analysis. In: Schneider SM, Gurevitch J (Eds) Design and analysis of ecological experiments. Oxford University Press, 2nd edn, New York: pp. 63–77Google Scholar
  43. Reid B, Torres R (2014) Didymosphenia geminata invasion in South America: ecosystem impacts and potential biogeochemical state change in Patagonian rivers. Acta Oecol 54:101–109CrossRefGoogle Scholar
  44. Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH (2015) Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? J Exp Bot 66:2437–2447CrossRefGoogle Scholar
  45. Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45CrossRefGoogle Scholar
  46. Richter EM, Fornaro A, Lago CL, Angnes L (2007) Avaliação da composição química de águas do Sistema Guarapiranga: estudo de caso nos anos de 2002 e 2003. Quím Nova 30:1147–1152CrossRefGoogle Scholar
  47. Roberts MJ, Long SP, Tieszen LL, Beadle CL (2014) Measurement of plant biomass and net primary production. In: Coombs J, Hall DO, Long SP, Scurlock JMO (eds) Techniques in bioproductivity and photosynthesis, 2nd edn. Pergamon Press, Oxford, pp 1–19Google Scholar
  48. Rouco M, López-Rodas V, Gonzalez R, Huertas IE, García-Sanchez MJ, Flores-Moya A, Costas E (2014) The limit of the genetic adaptation to copper in freshwater phytoplankton. Oecologia 175:1179–1188CrossRefGoogle Scholar
  49. Schaefer B, Bundschum M, Rouch DA, Szocs E, Ohe PC, Pettigrove V, Schulz R, Nugeoda D, Kefford BJ (2012) Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci Total Environ 415:69–78CrossRefGoogle Scholar
  50. Scheibener SA, Rivera NA, Hesterberg D, Duckworth O, Buchwalter DB (2017) Periphyton uptake and trophic transfer of coal fly-ash-derived trace elements. Environ Toxicol Chem 36:2991–2996CrossRefGoogle Scholar
  51. Serra A, Corcholl N, Guash H (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633–641CrossRefGoogle Scholar
  52. Silva DCVR (2013) Toxicidade da água e sedimentos nos reservatórios Guarapiranga, Billings e Paiva Castro, em São Paulo. Dissertation, University of São PauloGoogle Scholar
  53. Smucker NJ, Detenbeck NE, Morrison AC (2013) Diatom responses to watershed development and potential moderating effects of near-stream forest and wetland cover. Freshwater Sci 32:230–249CrossRefGoogle Scholar
  54. Song LY, Wang YQ (2015) Investigation of microbial community structure of a shallow lake after one season copper sulfate algaecide treatment. Microbiol Res 170:105–113CrossRefGoogle Scholar
  55. Sousa ML, Silva SC, Pompêo MLM (2017) Bioacumulação de cobre no biofilme perifítico e seu impacto ecológico. Ciência Tecnol Ambiente 6:301–306Google Scholar
  56. Souza ML, Pellegrini BG, Ferragut C (2015) Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755:183–196CrossRefGoogle Scholar
  57. Stewart TJ, Traber J, Kroll A, Behra R, Sigg L (2013) Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND). Environ Sci Pollut Res Int 20:3214–3223Google Scholar
  58. Takamura-Enya T, Tokutake M (2016) Novel speciation analysis of copper in river water: observation of soluble anionic copper–ligand complexes. Limnology 17:117–125CrossRefGoogle Scholar
  59. Tang J, Ningyuan Z, Yan Z, Junzhuo L, Chenxi W, Kerr P, Yonghong W, Lam PKS (2017) Responses of periphyton to Fe2O3 nanoparticles: a physiological and ecological basis for defending nanotoxicity. Environ Sci Technol 51:10797–10805CrossRefGoogle Scholar
  60. Torgan LC, Bertolli, LM, Talgatti DM, Salmoni S (2013) Colonização e sucessão do perifíton. In: Schwazbold A, Burliga AL, Torgan LC (Eds.) Ecologia do perifíton. Rima, São Carlos, pp. 4558,Google Scholar
  61. Torres PB, Chow F, Furlan CM, Mandelli F, Mercadante A, Santos DYAC (2014) Standardization of a protocol to extract and analyze chlorophyll a and carotenoids in Gracilaria tenuistipitata var. liui. Zhang and Xia (Rhodophyta). Braz J Oceanogr 62:57–63Google Scholar
  62. Wetzel RG (1983) Recommendations for future research on periphyton. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. Springer, Dordrecht, pp 339–346CrossRefGoogle Scholar
  63. Weyer KM, Bush DR, Darzins A, Wilson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213CrossRefGoogle Scholar
  64. Yonghong W (2016) Periphyton: functions and applications in environmental remediation. Elsevier, AmsterdamGoogle Scholar
  65. Yonghong W, Lizhong X, Zhiqiang Y, Shabbir S, Kerr PG (2014) In situ bioremediation of surface waters by periphytons. Bioresour Technol 151:367–372CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Limnology, Department of Ecology, Institute of BioscienceUniversity of São PauloSão PauloBrazil
  2. 2.Laboratory of Marine Algae “Édison José de Paula”, Department of Botany, Institute of BioscienceUniversity of São PauloSão PauloBrazil

Personalised recommendations