Advertisement

Biochemical analysis and potential applications of aqueous and solid products generated from subcritical water extraction of microalgae Chlorella pyrenoidosa biomass

  • Nur Hidayah Zainan
  • Selvakumar Thiruvenkadam
  • Michael K. Danquah
  • Razif HarunEmail author
Article

Abstract

Subcritical water extraction (SWE) technology has become useful as a green extraction technology for generating various biochemical and bioactive compounds from a wide range of biomass feedstocks, including microalgae. SWE processes result in two different product phases: an aqueous phase containing solubilized or immiscible bioactive compounds from the extract, and solid-phase biomass debris containing residual or unextracted bioactive molecules in the matrix. While most SWEs of microalgal biomass focus on maximizing lipid production for biofuel application, the present work seeks to explore opportunities to identify and characterize compounds obtained from both the aqueous and solid phases. SWE of Chlorella pyrenoidosa biomass was carried out under varying conditions of temperature (170–370 °C), extraction time (1–20 min), and microalgal biomass loading (1–15%). Analysis of aqueous and solid-phase samples collected under varying SWE conditions showed a higher protein concentration of 4.13 mg mL−1 in the aqueous phase compared with carbohydrate (1.35 mg mL−1) for the optimum extraction conditions. About 17.52 mg g−1 of amino acids and 12.72 mg g−1 of organic acids were obtained from the aqueous phase with glutamic acid and lactic acid being the highest. The findings from this work would be useful in identifying and harnessing important microalgal biochemical from SWE process to develop new and improved bioproduct technologies.

Keywords

Chlorophyta Subcritical water extraction Microalgal biomass Proteins Carbohydrates Amino acids Organic acids 

Notes

Funding information

The authors would like to thank the Malaysia Ministry of Higher Education (MOHE) and Universiti Putra Malaysia (Putra IPS grant no.: 9573400) for the financial and infrastructural supports to pursue this research work.

References

  1. Abdelmoez W, Yoshida H, Nakahasi T (2010) Pathways of amino acid transformation and decomposition in saturated subcritical water conditions. Int J Chem React Eng 8:1–19Google Scholar
  2. Alhattab M, Kermanshahi-Pour A, Brooks MS-L (2019) Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol 31:61–88CrossRefGoogle Scholar
  3. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R (2005) Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 107:381–386CrossRefGoogle Scholar
  4. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R (2016) Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris. Biomed Res Int 2016:1–10CrossRefGoogle Scholar
  5. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436CrossRefGoogle Scholar
  6. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210PubMedCrossRefGoogle Scholar
  7. Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A 239:151–157CrossRefGoogle Scholar
  8. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:1–34CrossRefGoogle Scholar
  9. Cheung PCK (1999) Temperature and pressure effects on supercritical carbon dioxide extraction of n − 3 fatty acids from red seaweed. Food Chem 65:399–403CrossRefGoogle Scholar
  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  11. Duygu DY, Udoh AU, Ozer TB, Akbulut A, Erkaya IA, Yildiz K et al (2012) Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr J Biotechnol 11:3817–3824Google Scholar
  12. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185PubMedCrossRefGoogle Scholar
  13. Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121CrossRefGoogle Scholar
  14. Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168:1079–1084CrossRefGoogle Scholar
  15. Ho CHL, Cacace JE, Mazza G (2007) Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. Food Sci Technol 40:1637–1647Google Scholar
  16. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198PubMedCrossRefGoogle Scholar
  17. Ho BCH, Mustapa Kamal SM, Danquah MK, Harun R (2018) Optimization of subcritical water extraction (SWE) of lipid and eicosapentaenoic acid (EPA) from Nannochloropsis gaditana. Biomed Res Int 2018:1–11Google Scholar
  18. Kiatsiriroat T (2012) Biochar production from freshwater algae by slow pyrolysis. Maejo Int J Sci Technol 6:186–195Google Scholar
  19. Kouchaksaraie ZA, Niazmand R, Najafi MN (2016) Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innov Food Sci Emerg 36:234–244CrossRefGoogle Scholar
  20. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour Technol 101:1036–1043PubMedCrossRefGoogle Scholar
  21. Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA et al (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories 13:14CrossRefGoogle Scholar
  22. Lourenço SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32CrossRefGoogle Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  24. Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102:11018–11026PubMedCrossRefGoogle Scholar
  25. Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:1–13CrossRefGoogle Scholar
  26. Meizoso IR, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharmaceut Biomed 51:456–463CrossRefGoogle Scholar
  27. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846PubMedCrossRefGoogle Scholar
  28. Mišurcová L, Buňka F, Vávra Ambrožová J, Machů L, Samek D, Kráčmar S (2014) Amino acid composition of algal products and its contribution to RDI. Food Chem 151:120–125PubMedCrossRefGoogle Scholar
  29. Moscoso JLG, Obeid W, Kumar S, Hatcher PG (2013) Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates. J Supercrit Fluids 82:183–190CrossRefGoogle Scholar
  30. Rashidi B, Trindade LM (2018) Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall. Algal Res 35:152–159CrossRefGoogle Scholar
  31. Reddy HK, Muppaneni T, Sun Y, Li Y, Ponnusamy S, Patil PD, Dailey P, Schaub T, Holguin FO, Dungan B, Cooke P, Lammers P, Voorhies W, Lu X, Deng S (2014) Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 133:73–81CrossRefGoogle Scholar
  32. Rodrigues IM, Carvalho MG, Rocha JM (2016) Increase of protein extraction yield from rapeseed meal through a pretreatment with phytase: rapeseed meal: enhancing alkaline protein extraction with phytase pretreatment. J Sci Food Agric 97:2641–2646PubMedCrossRefGoogle Scholar
  33. Rogalinski T, Herrmann S, Brunner G (2005) Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J Supercrit Fluids 36:49–58CrossRefGoogle Scholar
  34. Safi C, Ursu AV, Laroche C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res 3:61–65CrossRefGoogle Scholar
  35. Safi C, Frances C, Ursu A, Laroche C, Pouzet C, Vaca-Garcia C, Pontalier P-Y (2015) Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res 8:61–68CrossRefGoogle Scholar
  36. Sánchez NFS, Valadez-Blanco R, Hernández-Carlos B, Torres-Ariño A, Guadarrama-Mendoza PC, Salas-Coronado R (2016) Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Appl Microbiol Biotechnol 100:8667–8684CrossRefGoogle Scholar
  37. Sato N, Quitain AT, Kang K, Daimon H, Fujie K (2004) Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind Eng Chem Res 43:3217–3222CrossRefGoogle Scholar
  38. Schmitt J, Flemming H-C (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegradation 41:1–11CrossRefGoogle Scholar
  39. Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A (2008) Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour Technol 99:555–561PubMedCrossRefPubMedCentralGoogle Scholar
  40. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  41. Taing O, Taing K (2007) Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol 224:343–347CrossRefGoogle Scholar
  42. Thiruvenkadam S, Izhar S, Yoshida H, Danquah MK, Harun R (2015) Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Appl Energy 154:815–828CrossRefGoogle Scholar
  43. Thiruvenkadam S, Izhar S, Hiroyuki Y, Harun R (2018) Subcritical water extraction of Chlorella pyrenoidosa: Optimization through response surface methodology. Biomed Res Int 2018:1–10CrossRefGoogle Scholar
  44. Ursu A-V, Marcati A, Sayd T, Sante-Lhoutellier V, Djelveh G, Michaud P (2014) Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour Technol 157:134–139PubMedCrossRefGoogle Scholar
  45. Yoshida H, Tavakoli O (2004) Sub-critical water hydrolysis treatment for waste squid entrails and production of amino acids, organic acids, and fatty acids. J Chem Eng Jpn 37:253–260CrossRefGoogle Scholar
  46. Yoshida H, Terashima M, Takahashi Y (1999) Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis. Biotechnol Prog 15:1090–1094PubMedCrossRefGoogle Scholar
  47. Zakaria SM, Mustapa Kamal SM, Harun MR, Omar R, Siajam SI (2017a) Extraction of antioxidants from Chlorella sp. using subcritical water treatment. Mater Sci Eng 206:12035Google Scholar
  48. Zakaria SM, Mustapa Kamal SM, Harun MR, Omar R, Siajam SI (2017b) Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity. Molecules 22:1105PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zhu X, Zhu C, Zhao L, Cheng H (2008) Amino acids production from fish proteins hydrolysis in subcritical water. Chin J Chem Eng 16:456–460CrossRefGoogle Scholar
  50. Zhu G, Zhu X, Fan Q, Liu X, Shen Y, Jiang J (2010) Study on production of amino acids from bean dregs by hydrolysis in sub-critical water. Chin J Chem 28:2033–2038CrossRefGoogle Scholar
  51. Zhu G, Zhu X, Fan Q, Wan X (2011a) Kinetics of amino acid production from bean dregs by hydrolysis in sub-critical water. Amino Acids 40:1107–1113PubMedCrossRefGoogle Scholar
  52. Zhu G, Zhu X, Fan Q, Wan X (2011b) Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl 55:409–416CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nur Hidayah Zainan
    • 1
    • 2
  • Selvakumar Thiruvenkadam
    • 1
  • Michael K. Danquah
    • 3
  • Razif Harun
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Biotechnology EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia
  3. 3.Department of Chemical EngineeringUniversity of TennesseeChattanoogaUSA

Personalised recommendations