Advertisement

Silver nanoparticles against acute hepatopancreatic necrosis disease (AHPND) in shrimp and their depuration kinetics

  • Maribel Maldonado-Muñiz
  • Carlos Luna
  • Raquel Mendoza-Reséndez
  • Enrique Díaz Barriga-Castro
  • Sonia Soto-Rodriguez
  • Denis Ricque-Marie
  • Lucia Elizabeth Cruz-SuarezEmail author
23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU

Abstract

Ag-based nanoparticles (NPs) were successfully produced through green synthesis using an aqueous extract from the cultivated seaweed Ulva clathrata as the reducing and stabilizing agent. The biosynthesized NPs had spherical to polymorphic shapes with an average size of 9.5 nm. Microstructural and compositional studies revealed that these particles contained face-centred cubic crystallites of metallic Ag and AgCl. Characteristic peaks in the Fourier-transform infrared spectrum (FTIR) and Raman studies revealed the presence of functional bioactive metabolites from the seaweed extract, such as proteins, polysaccharides, and polyphenols, which are responsible for forming and stabilizing Ag/AgCl NPs. The biosynthesized Ag/AgCl NPs exhibited an important in vitro antibacterial effect against three Vibrio parahaemolyticus strains isolated from farmed shrimp affected with acute hepatopancreatic necrosis disease (AHPND) in northwestern Mexico. Litopenaeus vannamei shrimp were exposed for 7 days to feeds supplemented with Ag/AgCl NPs at 10, 100, 1000, or 10,000 ppm (Ag nominal dietary concentrations). Dietary NP supplement did not affect shrimp survival, growth, or feed conversion ratio, but high concentrations (1000 and 10,000 ppm) decreased the hepatosomatic index significantly. The short-term consumption of Ag/AgCl NPs produced a significant dose-dependent bioaccumulation of Ag in the hepatopancreas and to a lesser extent in the cuticle, while bioaccumulation in the muscle was not significant. The depuration study confirmed a fast Ag assimilation in shrimp’s hepatopancreas and showed a fast depuration rate in the hepatopancreas as well.

Keywords

Antibacterial activity Green seaweed Green synthesis Litopenaeus vannamei Vibrio parahaemolyticus 

Notes

Acknowledgements

The authors sincerely thank the company FITMAR for their support with the organisms used during the experimental tests in this research project.

Author contributions statement

MM-M synthetized the particles, performed the experiments, analysed the results and wrote the manuscript. CL conceived the synthesis and characterization of particles. RM-R conceived the synthesis and characterization of particles. EDB-C performed the characterization studies. SS-R provided the bacterial strains and conceived the microbiological studies. DR-M performed statistical and mathematical analyses, and wrote the manuscript. LEC-S designed and conceived all the experiments and wrote the manuscript. All authors reviewed the manuscript.

Funding information

This study was part of the project ‘Evaluación multidisciplinaria del potencial nutraceutico de macroalgas en camarones y murinos y su repercusión en el manejo de enfermedades bacterianas y metabólicas’, which received financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT) (Ciencia Basica #2014-238458).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10811_2019_1948_MOESM1_ESM.docx (966 kb)
ESM 1 (DOCX 965 kb)

References

  1. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039CrossRefGoogle Scholar
  2. Abirami RG, Kowsalya S (2015) Ulva fasciata nanoparticles characterization and its anticancer activity. World J Pharm Pharm Sci 4:1164–1175Google Scholar
  3. Aguirre-Guzmán G, Ruíz HM, Ascencio F (2004) A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquac Res 35:1395–1404CrossRefGoogle Scholar
  4. AOAC (ed) (1997) Official Method of Analysis, 16th edn. AOAC International, GaithersburgGoogle Scholar
  5. Biswas N, Kapoor S, Mahal HS, Mukherjee T (2007) Adsorption of CGA on colloidal silver particles: DFT and SERS study. Chem Phys Lett 444:338–345CrossRefGoogle Scholar
  6. Carvalho RA, Benfield MC, Santschi PH (1999) Comparative bioaccumulation studies of colloidally complexed and free-ionic heavy metals in juvenile brown shrimp Penaeus aztecus (Crustacea: Decapoda: Penaeidae). Limnol Oceanogr 44:403–414CrossRefGoogle Scholar
  7. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampallie RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074PubMedCrossRefGoogle Scholar
  8. Conapesca (2017) Anuario estadístico de acuacultura y pesca. Comisión Nacional de Acuacultura y Pesca, Mazatlan, Sinaloa, Mexico. pp 28 https://www.conapesca.gob.mx/work/sites/cona/dgppe/2017/ANUARIO_ESTADISTICO_2017.pdf. Access 26 Oct 2019
  9. Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernandez-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 551–552:334–343PubMedCrossRefGoogle Scholar
  10. Cruz-Suarez LE, Tapia-Salazar M, Nieto-Lopez MG, Guajardo-Barbosa C, Ricque-Marie D (2009) Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aquac Nutr 15:421–430CrossRefGoogle Scholar
  11. Cruz-Suarez LE, León A, Peña-Rodríguez A, Rodríguez-Peña G, Moll B, Ricque-Marie D (2010) Shrimp/Ulva Co-Culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 301:64–68CrossRefGoogle Scholar
  12. Cruz-Suarez LE, Nieto-Lopez M, Tapia-Salazar M, Maldonado-Muñiz M, Villarreal-Cavazos D, Ricque-Marie D (2013) Avances en la valoración de macroalgas del género Ulva como nutracéutico en Litopenaeus vannamei. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Nieto-Lopez MG, Villarreal-Cavazos DA, Gamboa-delgado J, Alvarez-Gonzalez C (eds) Contribuciones recientes en alimentacion acuicola. Universidad Autonoma de Nuevo León, San Nicolas de los Garza, pp 553–598 https://www.uanl.mx/utilerias/nutricion_acuicola/xii/LibroCRANA-ISBN.pdf. Access 08 July 2018
  13. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258PubMedCrossRefGoogle Scholar
  14. Dehnavi AS, Raisi A, Aroujalian A (2013) Control size and stability of colloidal silver nanoparticles with antibacterial activity prepared by a green synthesis method. Synth React Inorganic Met Nano-Metal Chem 43:543–551CrossRefGoogle Scholar
  15. Devi JS, Bhimba BV (2012) Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca In vitro. J Nanomedine Biotherapeutic Discov 1:1–5Google Scholar
  16. Dhas TS, Kumar VG, Karthick V, Jini AK, Govindaraju K (2014) Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A 120:416–420CrossRefGoogle Scholar
  17. El-Kassas EK, El-Kassas H, E-K MM (2014) Biogenic silver nanoparticles using seaweed Ulva rigida and their fungicidal and cytotoxic effects. JKAU Mar Sci 25:3–20CrossRefGoogle Scholar
  18. Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed) Marine Bioactive Compounds: Sources, Characterization and Applications. Springer US, Boston, pp 55–98CrossRefGoogle Scholar
  19. Joshi J, Srisala J, Truong VH, Chen I-T, Nuangsaeng B, Suthienkul O, Lo CF, Flegel TW, Sritunyalucksana K, Thitamadee S (2014) Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture 428:297–302CrossRefGoogle Scholar
  20. Kandasamy K, Alikunhi NM, Manickaswami G, Nabikhan A, Ayyavu G (2012) Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci 3:65–73CrossRefGoogle Scholar
  21. Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013a) Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3:229–233CrossRefGoogle Scholar
  22. Kannan RRR, Stirk WA, Van Staden J (2013b) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot 86:1–4CrossRefGoogle Scholar
  23. Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520CrossRefGoogle Scholar
  24. Kumar P, Selvi SS, Prabha AL, Kumar KP, Ganeshkumar RS, Govindaraju M (2012) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng 4:12–16Google Scholar
  25. Laramore S, Baptiste R, Wills PS, Hanisak MD (2018) Utilization of IMTA-produced Ulva lactuca to supplement or partially replace pelleted diets in shrimp (Litopenaeus vannamei) reared in a clear water production system. J Appl Phycol 30:3603–3610CrossRefGoogle Scholar
  26. Lee T-M, Liu C-H (1999) Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J Exp Bot 50:1855–1862CrossRefGoogle Scholar
  27. Liu J, He F, Gunn TM, Zhao D, Roberts CB (2009) Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir 25:7116–7128PubMedCrossRefGoogle Scholar
  28. Luna C, Cruz-Suarez LE, Mendoza-Resendez R, Ricque-Marie D, Gonzalez-Dueñas C, Maldonado-Muñiz M (2015a) Instituto Mexicano de la Propiedad Intelectual (IMPI) Solicitud de Patente MX/a/2015/002621 https://siga.impi.gob.mx/newSIGA/content/common/principal.jsf. Access 26 Oct 2019
  29. Luna C, Chávez VHG, Barriga-Castro ED, Nuñez N, Mendoza-Resendez R (2015b) Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds. Spectrochim Acta A 141:43–50CrossRefGoogle Scholar
  30. McLeod MC, Kitchens CL, Roberts CB (2005) CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir 21:2414–2418PubMedCrossRefGoogle Scholar
  31. Mendoza-Reséndez R, Núñez NO, Barriga-Castro ED, Luna C (2013) Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuum var. aviculare (piquin) fruits. RSC Adv 3:20765–20771CrossRefGoogle Scholar
  32. Mendoza-Reséndez R, Gómez-Treviño A, Barriga-Castro ED, Nuñez N, Luna C (2014) Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Adv 4:1650–1658CrossRefGoogle Scholar
  33. Metian M, Hédouin L, Eltayeb MM, Lacoue-Labarthe T, Teyssié JL, Mugnier C, Bustamante P, Warnau M (2010) Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: Laboratory and field studies. Mar Pollut Bull 61:576–584PubMedCrossRefGoogle Scholar
  34. Monfared AL, Soltani S (2013) Effects of silver nanoparticles administration on the liver of rainbow trout ( Oncorhynchus mykiss ): histological and biochemical studies. Pelagia Res Libr 3:285–289Google Scholar
  35. Morales-Covarrubias MS, García-Aguilar N, Bolan-Mejía MDC, Puello-Cruz AC (2016) Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity. Dis Aquat Org 122:57–65PubMedCrossRefGoogle Scholar
  36. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7Google Scholar
  37. Nezamdoost T, Bagherieh-Najjar MB, Aghdasi M (2014) Biogenic synthesis of stable bioactive silver chloride nanoparticles using Onosma dichroantha Boiss. root extract. Mater Lett 137:225–228CrossRefGoogle Scholar
  38. Nieto-López M, Tapia-Salazar M, Ricque-Marie D, Villarreal-Cavazos D, Lemme A, Cruz-Suarez LE (2011) Digestibility of different wheat products in white shrimp Litopenaeus vannamei juveniles. Aquaculture 319:369–376CrossRefGoogle Scholar
  39. Novak JP, Nickerson C, Franzen S, Feldheim DL (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761PubMedCrossRefPubMedCentralGoogle Scholar
  40. OECD (2005) OECD Detailed review paper on aquatic arthropods in life cycle and two-generation toxicity tests. OECD Environment Health and Safety Publications, OECD Publishing, Paris, http://www.oecd.org/chemicalsafety/testing/34241659.pdf. Accessed 15 Feb 2017
  41. OECD (2012) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure, OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris  https://doi.org/10.1787/9789264185296-en
  42. OIE (2014)Antimicrobial use in aquatic animals. In: Aquatic animal health code, Seventeent. World organisation for animal health, Paris, pp 109-117Google Scholar
  43. Pal S, Tak YK, Song JM (2015) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. J Biol Chem 290:1712–1720CrossRefGoogle Scholar
  44. Peña-Rodríguez A, León A, Moll B, Tapia-Salazar M, Nieto-López MG, Villarreal-Cavazos D, Ricque-Marie D, Cruz-Suárez LE (2010) Uso de Ulva clathrata en la nutrición del camarón blanco: revisión. En: Cruz-Suarez LE, Ricque-Marie D, TapiaSalazar M, Nieto-López MG, Villarreal-Cavazos A, Gamboa-Delgado J (Eds), Avances en Nutrición Acuícola X - Memorias del X Simposio Internacional de Nutrición Acuícola, 8-10 de Noviembre, San Nicolás de los Garza, N. L., México.Universidad Autónoma de Nuevo León, Monterrey, México, pp 700–712Google Scholar
  45. Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498PubMedCrossRefGoogle Scholar
  46. Petrus EM, Tinakumari S, Chai LC, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int Food Res J 18:55–66Google Scholar
  47. Prasad TNVKV, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25:177–182CrossRefGoogle Scholar
  48. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedCrossRefGoogle Scholar
  49. Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Dung TNB, Kannapiranf K (2017) Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep 14:1–7CrossRefGoogle Scholar
  50. Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:1–9Google Scholar
  51. Rebecca LJ, Dhanalakshmi V, Sharmila S (2012) Effect of the extract of Ulva sp on pathogenic microorganisms. J Chem Pharm Res 4:4875–4878Google Scholar
  52. Saritha K, Mani AE, Priyalaxmi M, Patterson J (2013) Antibacterial activity and biochemical constituents of seaweed Ulva lactuca. Glob J Pharmacol 7:276–282Google Scholar
  53. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324PubMedPubMedCentralCrossRefGoogle Scholar
  54. Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishukumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4:881–888CrossRefGoogle Scholar
  55. Sharma A, Sharma S, Sharma K, Chetri S, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawa V (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28:1759–1774CrossRefGoogle Scholar
  56. Singh CR, Kathiresan K, Anandhan S (2015) A review on marine based nanoparticles and their potential applications. Afr J Biotechnol 14:1525–1532CrossRefGoogle Scholar
  57. Sirvakumar K, Kannappan S, Masilamani D, Prasanna KP (2014) Evaluation of marine macro alga, Ulva fasciata against bio-luminescent causing Vibrio harveyi during Penaeus monodon larviculture. Afr J Microbiol Res 8:803–813CrossRefGoogle Scholar
  58. Sivaramasamy E, Zhiwei W (2016) Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. J Nanomed Nanotechnol 7:1–10CrossRefGoogle Scholar
  59. Sivaramasamy E, Zagorsek K, Li F, Xiang J (2017) In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 166:329–337CrossRefGoogle Scholar
  60. Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olvera R, Betancourt-Lozano M, Morales-Covarrubias MS (2015) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol 81:1689–1699PubMedPubMedCentralCrossRefGoogle Scholar
  61. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179PubMedCrossRefGoogle Scholar
  62. Swain P, Sasmal A, Nayak SK, Barik S, Mishra SS, Mohapatra KD, Swain SK, Saha JN, Sen AK, Jayasankar P (2014) Evaluation of selected metal nanoparticles on hatching and survival of larvae and fry of Indian major carp, rohu ( Labeo rohita ). Aquac Res 47:498–511CrossRefGoogle Scholar
  63. Venkatesan J, Kim S-K, Shim M (2016) Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials 6:1–18CrossRefGoogle Scholar
  64. Vieira AP, Stein EM, Andreguetti DX, Colepicolo P, da Costa Ferreira AM (2016) Preparation of silver nanoparticles using aqueous extracts of the red algae Laurencia aldingensis and Laurenciella sp. and their cytotoxic activities. J Appl Phycol 28:2615–2622CrossRefGoogle Scholar
  65. Vijayan SR, Santhiyagu P, Ramasamy R, Aravalagan P, Kumar G, Ethiraj K, Ramaswamy BR (2016) Seaweeds: A resource for marine bionanotechnology. Enzym Microb Technol 95:45–57CrossRefGoogle Scholar
  66. Xie J, Lee JY, Wang DIC, Ting YP (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682PubMedCrossRefGoogle Scholar
  67. Yang YT, Chen IT, Lee CT, Chen CY, Lin SS, Hor LI, Tseng TC, Huang YT, Sritunyalucksana K, Thitamadee S, Wang HC, Lo CF (2014) Draft genome sequences of four strains of Vibrio parahaemolyticus, three of which cause Early Mortality Syndrome/Acute Hepatopancreatic Necrosis Disease in shrimp in China and Thailand. Genome Announc 2:e00816–e00814PubMedPubMedCentralGoogle Scholar
  68. Yousefzadi M, Rahimi Z, Ghafori V (2014) The green synthesis , characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (Wulfen). J Agardh Mater Lett 137:1–4CrossRefGoogle Scholar
  69. Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals 11:27–32PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Biologicas (FCB)Universidad Autonoma de Nuevo Leon (UANL)San Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias Fisico Matematicas (FCFM)Universidad Autonoma de Nuevo Leon (UANL)San Nicolas de los GarzaMexico
  3. 3.Centro de Investigacion en Quimica Aplicada (CIQA)SaltilloMexico
  4. 4.Centro de Investigación Alimentacion y DesarrolloMazatlanMexico

Personalised recommendations