Advertisement

The effect of mechanical cleaning technology (MCT) on membrane fouling in a novel hybrid membrane photobioreactor (HMPBR) containing Arthrospira platensis (Spirulina)

  • Mahsa Keyvan Hosseini
  • Farshid Pajoum ShariatiEmail author
  • Babak Bonakdarpour
  • Amir Heydarinasab
Article

Abstract

Membrane fouling is considered in a novel hybrid membrane photobioreactor (HMPBR) including airlift, membrane, and granular particles. In microalgae systems, cake resistance is the main fouling resistance. To mitigate membrane fouling, this system works under varied granular packing ratios, such as 0, 0.5, 1, and 1.5% (v/v). The results confirm the good effect of polymeric granules on the reduction of the cake resistance. Compared with the absence of granular particles, the addition of these particles up to 1.5% decreases cake resistance by 53%, whereas cake resistance is the most part of total fouling resistance. Regarding the major foulants, FTIR analysis demonstrates protein which has been known as a major foulant. Moreover, with the increase in the granular packing ratio, the protein concentration in the cake layer increases. This issue could be related to the increase in pore blocking owing to the blockage of the membrane pores and the inability of the protein-like substances to pass the membrane and stay on the membrane surface.

Keywords

Hybrid membrane photobioreactor Membrane fouling Microalgae Mechanical cleaning process Granular particle 

Notes

Acknowledgments

The authors would like to express their sincere gratitude to the authority of Kubota Company and also to the great team members Parisa Keyvan Hosseini, Salar Helchi, Soroush Azizi, and Ali Hashemi, for their collaboration in this project.

References

  1. Alcántara C, Posadas E, Guieysse B, Muñoz R (2015) Microalgae-based wastewater treatment. In: Gonzalez P (ed) Handbook of marine microalgae. Elsevier, New York, pp 439–455CrossRefGoogle Scholar
  2. Alresheedi MT, Basu OD (2014) Support media impacts on humic acid, cellulose, and kaolin clay in reducing fouling in a submerged hollow fiber membrane system. J Membr Sci 450:282–290CrossRefGoogle Scholar
  3. Ambrosi MA, Reinehr CO, Bertolin TE, Costa JAV, Colla LM (2009) Propriedades de saúde de Spirulina spp. Rev Ciênc Farmacêut Básica Aplicada 29:109–117Google Scholar
  4. APHA, AWWA and WEF (1998) Standard method for the examination of water and wastewater, 20th edn. APHA, WashingtonGoogle Scholar
  5. Aryal R, Vigneswaran S, Kandasamy J (2010) Influence of buoyant media on particle layer dynamics in microfiltration membranes. Water Sci Technol. 61:1733–1738CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aslam M, McCarty PL, Bae J, Kim J (2014) The effect of fluidized media characteristics on membrane fouling and energy consumption in anaerobic fluidized membrane bioreactors. Sep Purif Technol 132:10–15CrossRefGoogle Scholar
  7. Aslam M, Charfi A, Lesage G, Heran M, Kim J (2017) Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chem Eng J. 307:897–913CrossRefGoogle Scholar
  8. Aun Ng C, Sun D, Fane AG (2006) Operation of membrane bioreactor with powdered activated carbon addition. Sep Sci Technol 41:1447–1466CrossRefGoogle Scholar
  9. Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basu O, Huck P (2005) Impact of support media in an integrated biofilter–submerged membrane system. Water Res 39:4220–4228CrossRefGoogle Scholar
  11. Behkish A (2004) Hydrodynamic and mass transfer parameters in large-scale slurry bubble column reactors. Doctoral Thesis, University of Pittsburgh, PittsburghGoogle Scholar
  12. Belfort G, Davis RH, Zydney AL (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci 96:1–58CrossRefGoogle Scholar
  13. Bemberis I, Hubbard PJ, Leonard FB (1971) Membrane sewage treatment systems: potential for complete wastewater treatment. American Society of Agricultural Engineers, IllinoisGoogle Scholar
  14. Bilad MR, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2014) Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresour Technol. 155:410–417CrossRefGoogle Scholar
  15. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78CrossRefGoogle Scholar
  16. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81CrossRefGoogle Scholar
  17. Chen F, Bi X, Ng HY (2016) Effects of bio-carriers on membrane fouling mitigation in moving bed membrane bioreactor. J Membr Sci 499:134–142CrossRefGoogle Scholar
  18. Cui Z, Bellara S, Homewood P (1997) Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration. J Membr Sci 128:83–91CrossRefGoogle Scholar
  19. Draaisma RB, Wijffels RH, Slegers PE, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. J Anal Chem 28:350–356CrossRefGoogle Scholar
  21. Duygu DY, Udoh AU, Ozer TB, Akbulut A, Erkaya IA, Yildiz K, Guler D (2012) Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr J Biotechnol 11:3817–3824Google Scholar
  22. Fatone F, Battistoni P, Pavan P, Cecchi F (2007) Operation and maintenance of full-scale municipal membrane biological reactors: a detailed overview on a case study. Ind Eng Chem Res 46:6688–6695CrossRefGoogle Scholar
  23. Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36:S23–S32CrossRefGoogle Scholar
  24. Gil J, Túa L, Rueda A, Montaño B, Rodríguez M, Prats D (2010) Monitoring and analysis of the energy cost of an MBR. Desalination 250:997–1001CrossRefGoogle Scholar
  25. Huang L, Lee D-J (2015) Membrane bioreactor: a mini review on recent R&D works. Bioresour Technol 194:383–388CrossRefGoogle Scholar
  26. Huang X, Wei C-H, Yu K-C (2008) Mechanism of membrane fouling control by suspended carriers in a submerged membrane bioreactor. J Membr Sci 309:7–16CrossRefGoogle Scholar
  27. IoZ and ESA (2012) Living planet: biodiversity, biocapacity and better choices. Report, WWFGoogle Scholar
  28. Jin L, Ong SL, Ng HY (2013) Fouling control mechanism by suspended biofilm carriers addition in submerged ceramic membrane bioreactors. J Membr Sci 427:250–258CrossRefGoogle Scholar
  29. Kim S-K (ed) (2015) Handbook of marine microalgae: biotechnology advances. Academic Press, New York, pp 1–9CrossRefGoogle Scholar
  30. Kimura K, Hane Y, Watanabe Y, Amy G, Ohkuma N (2004) Irreversible membrane fouling during ultrafiltration of surface water. Water Res 38:3431–3441CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kiso Y, Jung Y-J, Park M-S, Wang W, Shimase M, Yamada T, Min K-S (2005) Coupling of sequencing batch reactor and mesh filtration: operational parameters and wastewater treatment performance. Water Res 39:4887–4898CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kraume M, Drews A (2010) Membrane bioreactors in waste water treatment–status and trends. Chem Eng Technol 33:1251–1259CrossRefGoogle Scholar
  33. Krause S, Zimmermann B, Meyer-Blumenroth U, Lamparter W, Siembida B, Cornel P (2010) Enhanced membrane bioreactor process without chemical cleaning. Water Sci Technol 61:2575–2580CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kurita T, Kimura K, Watanabe Y (2014) The influence of granular materials on the operation and membrane fouling characteristics of submerged MBRs. J Membr Sci 469:292–299CrossRefGoogle Scholar
  35. Lee J-Y, Choi B-K, Ahn K-H, Maeng SK, Song K-G (2012) Characteristics of flux and gel layer on microfilter and non-woven fabric filter surface based on anoxic–aerobic MBRs. Bioproc Biosyst Eng 35:1389–1398CrossRefGoogle Scholar
  36. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liao Y, Bokhary A, Maleki E, Liao B (2018) A review of membrane fouling and its control in algal-related membrane processes. Bioresour Technol 264:343–358CrossRefPubMedPubMedCentralGoogle Scholar
  38. Low SL, Ong SL, Ng HY (2016) Characterization of membrane fouling in submerged ceramic membrane photobioreactors fed with effluent from membrane bioreactors. Chem Eng J 290:91–102CrossRefGoogle Scholar
  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  40. Lupatini AL, Colla LM, Canan C, Colla E (2017) Potential application of microalga Spirulina platensis as a protein source. J Sci Food Agric 97:724–732CrossRefPubMedPubMedCentralGoogle Scholar
  41. Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512CrossRefPubMedPubMedCentralGoogle Scholar
  42. Metzger U, Le-Clech P, Stuetz RM, Frimmel FH, Chen V (2007) Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes. J Membr Sci 301:180–189CrossRefGoogle Scholar
  43. Mistry B (2009) A handbook of spectroscopic data chemistry. Oxford Book Company, JaipurGoogle Scholar
  44. Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nguyen NC, Chen S-S, Nguyen HT, Ray SS, Ngo HH, Guo W, Lin P-H (2016) Innovative sponge-based moving bed–osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment. Water Res 91:305–313CrossRefPubMedPubMedCentralGoogle Scholar
  46. Qu F, Liang H, Tian J, Yu H, Chen Z, Li G (2012) Ultrafiltration (UF) membrane fouling caused by cyanobateria: fouling effects of cells and extracellular organics matter (EOM). Desalination 293:30–37CrossRefGoogle Scholar
  47. Richmond A (ed) (1986) Handbook of microalgal mass culture. CRC Press, Boca RatonGoogle Scholar
  48. Rosenberger S, Helmus F, Krause S, Bareth A, Meyer-Blumenroth U (2011) Principles of an enhanced MBR-process with mechanical cleaning. Water Sci Technol 64:1951–1958CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rosenberger S, Helmus FP, Drews A (2016) Addition of particles for fouling minimization in membrane bioreactors–permeability performance, fluid dynamics, and rheology. Chem Ing Tech 88:29–38CrossRefGoogle Scholar
  50. Saha N, Balakrishnan M, Ulbricht M (2007) Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling. J Membr Sci 306:287–297CrossRefGoogle Scholar
  51. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7:e38975CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shariati FP, Mehrnia MR, Sarrafzadeh MH, Rezaee S, Grasmick A, Heran M (2013) Fouling in a novel airlift oxidation ditch membrane bioreactor (AOXMBR) at different high organic loading rate. Sep Purif Technol 105:69–78CrossRefGoogle Scholar
  53. Simionato D, Basso S, Giacometti GM, Morosinotto T (2013) Optimization of light use efficiency for biofuel production in algae. Biophys Chem 182:71–78CrossRefGoogle Scholar
  54. Verrecht B, Maere T, Nopens I, Brepols C, Judd S (2010) The cost of a large-scale hollow fibre MBR. Water Res 44:5274–5283CrossRefGoogle Scholar
  55. Wang X-m, Waite TD (2009) Role of gelling soluble and colloidal microbial products in membrane fouling. Environ Sci Technol 43:9341–9347CrossRefGoogle Scholar
  56. Wang Q, Wang Z, Wu Z, Ma J, Jiang Z (2012) Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chem Eng J 179:169–177CrossRefGoogle Scholar
  57. Yang Q, Chen J, Zhang F (2006) Membrane fouling control in a submerged membrane bioreactor with porous, flexible suspended carriers. Desalination 189:292–302CrossRefGoogle Scholar
  58. Yang Q-Y, Yang T, Wang H-J, Liu K-Q (2009) Filtration characteristics of activated sludge in hybrid membrane bioreactor with porous suspended carriers (HMBR). Desalination 249:507–514CrossRefGoogle Scholar
  59. Yoo R, Kim J, McCarty PL, Bae J (2012) Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresour Technol 120:133–139CrossRefGoogle Scholar
  60. Zarrouk C (1966) Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima. Thesis University of ParisGoogle Scholar
  61. Zhang X, Wang Z, Wu Z, Lu F, Tong J, Zang L (2010) Formation of dynamic membrane in an anaerobic membrane bioreactor for municipal wastewater treatment. Chem Eng J 165:175–183CrossRefGoogle Scholar
  62. Zhong Z, Xing W, Liu X, Jin W, Xu N (2007) Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts. J Membr Sci 301:67–75CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringScience and Research Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations