Advertisement

Alkaline flocculation of Microcystis aeruginosa induced by calcium and magnesium precipitates

  • Tomáš Potočár
  • João Augusto Vitorino Pereira
  • Irena Brányiková
  • Magdalena Barešová
  • Martin Pivokonský
  • Tomáš BrányikEmail author
Article

Abstract

The biotechnological potential of Microcystis aeruginosa brings requirements for efficient cultivation and harvesting of biomass. Flocculation of M. aeruginosa at alkaline pH induced by calcium or magnesium precipitates was studied under model conditions, in culture medium with/without cellular organic matter (COM). The effect of independent variables (Ca2+, Mg2+, PO43−, and pH) on the zeta potential and turbidity of cells and inorganic precipitates was quantified by response surface methodology. The experimentally obtained flocculation efficiencies (FEs) were compared with predictions of physicochemical interaction (DLVO) models. The results presented here delimited the concentration ranges of Ca2+, Mg2+, PO43−, and pH, resulting in FE > 85%. The DLVO prediction model suggested that for high FE, positively charged precipitates and sufficient precipitate turbidity were required. At pH 10, alkaline flocculation was more advantageous using magnesium precipitates, since it required less phosphate. High FE with COM was achieved at pH 12 when precipitate formation was induced at a low phosphate concentration by the addition of magnesium hydroxide.

Keywords

Cyanobacteria Inorganic precipitates Surface interactions DLVO theory 

Notes

Funding information

This research was supported by the Grant Agency of the Czech Republic (project 18-05007S).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Res 5:226–230CrossRefGoogle Scholar
  2. Branyikova I, Filipenska M, Urbanova K, Ruzicka MC, Pivokonsky M, Branyik T (2018) Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates. Colloids Surf B 166:54–60CrossRefGoogle Scholar
  3. Folkman Y, Wachs AM (1973) Removal of algae from stabilization pond effluents by lime treatment. Water Res 7:419–435CrossRefGoogle Scholar
  4. Geada P, Gkelis S, Teixeira J, Vasconcelos V, Vicente A, Fernandes B (2017a) Cyanobacterial toxins as a high added-value product. In: Muñoz R, Gonzalez C (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing, Cambridge, pp 405–432Google Scholar
  5. Geada P, Pereira RN, Vasconcelos V, Vicente AA, Fernandes BD (2017b) Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production. Algal Res 27:235–243CrossRefGoogle Scholar
  6. Gerardo ML, Van Den Hende S, Vervaeren H, Coward T, Skill SC (2015) Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res 11:248–262CrossRefGoogle Scholar
  7. González-Fernández C, Ballesteros M (2013) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25:991–999CrossRefGoogle Scholar
  8. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids   Surfaces B 14:105–119CrossRefGoogle Scholar
  9. Ito T, Okabe K, Mori M (2018) Growth reduction of Microcystis aeruginosa by clay ball elution solution. Appl Clay Sci 162:223–239CrossRefGoogle Scholar
  10. Khan MI, Lee MG, Seo HJ, Shin JH, Shin TS, Yoon YH, Kim MY, Choi JI, Kim JD (2016) Enhancing the feasibility of Microcystis aeruginosa as a feedstock for bioethanol production under the influence of various factors. Biomed Res Int 2016:1–9Google Scholar
  11. Khan MI, Lee MG, Shin JH, Kim JD (2017) Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express 7:1–9CrossRefGoogle Scholar
  12. Kolska Z, Reznickova A, Svorcik I (2012) Surface characterization of polymer foils. E-polymers 083:1–13Google Scholar
  13. Lawton LA, Edwards C (2008) Conventional laboratory methods for cyanotoxins. In: Hudnell HK (ed) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, New York, pp 513–537CrossRefGoogle Scholar
  14. Leentvar J, Rebhun ME (1982) Effect of magnesium and calcium precipitation on coagulation-flocculation with lime. Water Res 16:655–662CrossRefGoogle Scholar
  15. Lin Z, Xu Y, Zhen Z, Fud Y, Liu Y, Li W, Luo C, Ding A, Zhang D (2015) Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting. Bioresour Technol 190:82–88CrossRefGoogle Scholar
  16. Lürling M, Noymac NP, Magalhães L, Miranda M, Mucci M, van Oosterhout F, Huszar VLM, Marinho MM (2017) Critical assessment of chitosan as coagulant to remove cyanobacteria. Harmful Algae 66:1–12CrossRefGoogle Scholar
  17. Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327CrossRefGoogle Scholar
  18. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  19. Naceradska J, Pivokonsky M, Pivokonska L, Baresova M, Henderson RK, Zamyadi A, Janda V (2017) The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation. Water Res 114:42–49CrossRefGoogle Scholar
  20. Nguyen TDP, Frappart M, Jaouen P, Pruvost J, Bourseau P (2014) Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition. Environ Technol 35:1378–1378CrossRefGoogle Scholar
  21. Niedermeyer THJ, Daily A, Swiatecka-Hagenbruch M, Moscow JA (2014) Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One 9:e91476CrossRefGoogle Scholar
  22. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745CrossRefGoogle Scholar
  23. Pivokonsky M, Safarikova J, Baresova M, Pivokonska L, Kopecka I (2014) A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Res 51:37–46CrossRefGoogle Scholar
  24. Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf B 112:213–218CrossRefGoogle Scholar
  25. Safarikova J, Baresova M, Pivokonsky M, Kopecka I (2013) Influence of peptides and proteins produced by cyanobacterium Microcystis aeruginosa on the coagulation of turbid waters. Sep Purif Technol 118:49–57CrossRefGoogle Scholar
  26. Shi W, Tan W, Wang L, Pan G (2016) Removal of Microcystis aeruginosa using cationic starch modified soils. Water Res 97:19–25CrossRefGoogle Scholar
  27. Sukenik A, Shelef G (1984) Algal autoflocculation - verification and proposed mechanism. Biotechnol Bioeng 26:142–147CrossRefGoogle Scholar
  28. Tappan E, Chamberlin AR (2008) Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme’s regulatory site. Chem Biol 15:167–174CrossRefGoogle Scholar
  29. van Oss CJ (1995) Hydrophobicity of biosurfaces — origin, quantitative determination and interaction energies. Colloids Surf B 5:91–110CrossRefGoogle Scholar
  30. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119CrossRefGoogle Scholar
  31. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239CrossRefGoogle Scholar
  32. Wang L, Liang W, Yu J, Liang Z, Ruan L, Zhang Y (2013) Flocculation of Microcystis aeruginosa using modified larch tannin. Environ. Sci Technol 47:771–5777Google Scholar
  33. Yap RKL, Whittaker M, Diao M, Stuetz RM, Jefferson B, Bulmus V, Peirson WL, Nguyen AV, Henderson RK (2014) Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation. Water Res 61:253–262CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tomáš Potočár
    • 1
  • João Augusto Vitorino Pereira
    • 1
  • Irena Brányiková
    • 2
  • Magdalena Barešová
    • 3
  • Martin Pivokonský
    • 3
  • Tomáš Brányik
    • 4
    Email author
  1. 1.Department of BiotechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.Institute of Chemical Process FundamentalsThe Czech Academy of SciencesPragueCzech Republic
  3. 3.Institute of HydrodynamicsThe Czech Academy of SciencesPragueCzech Republic
  4. 4.Department of BiotechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations