Potential of tropical macroalgae from French Polynesia for biotechnological applications

  • Mayalen ZubiaEmail author
  • Olivier P. Thomas
  • Stéphanie Soulet
  • Marina Demoy-Schneider
  • Denis Saulnier
  • Solène Connan
  • Elliot C. Murphy
  • Florent Tintillier
  • Valérie Stiger-Pouvreau
  • Sylvain Petek


Extracts from 26 marine macroalgal species (11 Phaeophyceae, 7 Chlorophyta, and 8 Rhodophyta) sampled from the lagoons of Tahiti, Moorea, and Tubuai (French Polynesia) were tested for several biological activities. The red macroalga Amansia rhodantha exhibited the strongest antioxidant activities using four complementary methodologies (total phenolic content, 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power assay, and oxygen radical absorbance capacity assay). Therefore, the major metabolites of A. rhodantha were isolated and their structures identified. Some brown algae, especially species of the family Dictyotaceae like Padina boryana and Dictyota hamifera, showed cytotoxic activities against murine melanoma cells. Caulerpa chemnitzia extract demonstrated also a strong α-glucosidase inhibition (83.8% at 10 μg mL−1) and Asparagopsis taxiformis extract a high acetylcholinesterase inhibition (71.3% at 100 μg mL−1). Lastly, several Polynesian seaweeds demonstrated quorum-sensing inhibition for Vibrio harveyi. These results suggested that some seaweeds from French Polynesia have a great biotechnological potential for future applications in aquaculture, health, or cosmetic industries.


Seaweeds Coral reefs Screening Bioactive compounds Amansia rhodantha 



The authors are grateful to Clara De Gaillande and Mathieu Grellier (University of French Polynesia) for technical assistance in the field. We thank IRD’s technician team (IRD center, French Polynesia) for taking us by boat to certain collection sites in Tahiti lagoon and their contribution to the production of organic extracts. We acknowledge Cécile Debitus for her help in the implementation of the QSi bioassays.

Funding information

This research was financed by the University of French Polynesia (PROLIFALG project), the “Délégation à la Recherche” of the Government of French Polynesia (POLYALG project, convention no. 8769/MSR/REC), and the “Institut de Recherche pour le Développement” (IRD).

Supplementary material

10811_2019_1920_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1357 kb)
10811_2019_1920_MOESM2_ESM.doc (182 kb)
ESM 2 (DOC 182 kb)


  1. Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol 16:527–537PubMedGoogle Scholar
  2. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786PubMedGoogle Scholar
  3. Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 12:4043–4045Google Scholar
  4. Bedoux G, Hardouin K, Burlot AS, Bourgougnon N (2014) Bioactive components from seaweeds: cosmetic applications and future development. In: Bourgougnon N (ed) Advances in botanical research. Academic Press, London, pp 345–378Google Scholar
  5. Bernardini G, Minetti M, Polizzotto G, Biazzo M, Santucci A (2018) Pro-apoptotic activity of French Polynesian Padina pavonica extract on human osteosarcoma cells. Mar Drugs 16:504PubMedCentralGoogle Scholar
  6. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578PubMedGoogle Scholar
  7. Bischof K, Gomez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biol 5:141–166Google Scholar
  8. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211PubMedGoogle Scholar
  9. Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77:2269–2286Google Scholar
  10. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124PubMedGoogle Scholar
  11. Bourgougnon N, Stiger-Pouvreau V (2011) Chemodiversity and bioactivity within red and brown macroalgae along the French coasts, metropole and overseas departements and territories. In: Kim S-K (ed) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley-Blackwell, Oxford, pp 58–105Google Scholar
  12. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30Google Scholar
  13. Cardellina JH, Moore RE (1978) Sphingosine derivatives from red algae of the ceramiales. Phytochemistry 17:554–555Google Scholar
  14. Custódio L, Silvestre L, Rocha MI, Rodrigues MJ, Vizetto-Duarte C, Pereira H, Barreira L, Varela J (2016) Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharm Biol 54:1687–1696PubMedGoogle Scholar
  15. De Gaillande C, Payri C, Remoissenet G, Zubia M (2017) Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. J Appl Phycol 29:2249–2266Google Scholar
  16. Dictionary of Natural Products (2019) 27.2, CRC Press.
  17. Dubber D, Harder T (2008) Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations. Aquaculture 274:196–200Google Scholar
  18. Duffy JE, Paul AV (1992) Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339PubMedGoogle Scholar
  19. Egorin MJ, Rosen DM, Benjamin SE, Callery PS, Sentz DL, Eiseman JL (1997) In vitro metabolism by mouse and human liver preparations of halomon, an antitumor halogenated monoterpene. Cancer Chemother Pharmacol 41:9–14PubMedGoogle Scholar
  20. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95Google Scholar
  21. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147PubMedPubMedCentralGoogle Scholar
  22. Fytianos K, Pegiadou S, Raikos N, Eleftheriadis I, Tsoukali H (1997) Determination of non-ionic surfactants (polyethoxylated-nonylphenols) by HPLC in waste waters. Chemosphere 35:1423–1429Google Scholar
  23. García-Bueno N, Decottignies P, Turpin V, Dumay J, Paillard C, Stiger-Pouvreau V, Kervarec N, Pouchus Y-F, Marin-Atucha AA, Fleurence J (2014) Seasonal antibacterial activity of two red seaweeds, Palmaria palmata and Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. Aquat Living Resour 27:83–89Google Scholar
  24. Guiry MD, Guiry GM (2019) AlgaeBase. (accessed 21/05/19)
  25. Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, Wyatt A, Smith JE (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One 6:e27973PubMedPubMedCentralGoogle Scholar
  26. Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837PubMedGoogle Scholar
  27. Hay ME (1991) Marine-terrestrial contrasts in the ecology of plant chemical defenses against herbivores. Trends Ecol Evol 6:362–365PubMedGoogle Scholar
  28. Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145Google Scholar
  29. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedGoogle Scholar
  30. Isnansetyo A, Lutfia FNL, Nursid M, Susidarti RA (2017) Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharm J 9:14–20Google Scholar
  31. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193Google Scholar
  32. Jorissen H, Skinner C, Osinga R, De Beer D, Nugues MM (2016) Evidence for water-mediated mechanisms in coral–algal interactions. Proc R Soc B 283:20161137PubMedGoogle Scholar
  33. Jungclaus G, Avila V, Hites R (1978) Organic compounds in an industrial wastewater: a case study of their environmental impact. Environ Sci Technol 12:88–96Google Scholar
  34. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie J, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399Google Scholar
  35. Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69:2820–2825PubMedGoogle Scholar
  36. Kornprobst JM (2014) Encyclopedia of marine natural products. Wiley-VCH Verlag, WeinheimGoogle Scholar
  37. Kumar S, Narwal S, Kumar V, Prakash O (2001) α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5:19–29Google Scholar
  38. Le Lann K, Surget G, Couteau C, Coiffard L, Cérantola S, Gaillard F, Larnicol M, Zubia M, Guérard F, Poupart N, Stiger-Pouvreau V (2016) Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J Appl Phycol 28:3547–3559Google Scholar
  39. Longo GO, Hay ME (2017) Seaweed allelopathy to corals: are active compounds on, or in, seaweeds? Coral Reefs 36:247–253Google Scholar
  40. Mai T, Tintillier F, Lucasson A, Moriou C, Bonno E, Petek S, Magré K, Al-Mourabit A, Saulnier D, Debitus C (2015) Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863. Lett Appl Microbiol 61:311–317PubMedGoogle Scholar
  41. MarinLit (2019) MarinLit: a database of the marine natural products literatura. Royal Society of Chemistry
  42. Mata L, Wright E, Owens L, Paul N, de Nys R (2013) Water-soluble natural products from seaweed have limited potential in controlling bacterial pathogens in fish aquaculture. J Appl Phycol 25:1963–1973Google Scholar
  43. N’Yeurt AD, Payri CE (2006) Marine algal flora of French Polynesia. I. Phaeophyceae (Ochrophyta, Brown algae). Cryptogam Algol 27:111–152Google Scholar
  44. N’Yeurt AD, Payri CE (2007) Marine algal flora of French Polynesia. II. Chlorophyceae (green algae). Cryptogam Algol 28:3–88Google Scholar
  45. N’Yeurt AD, Payri CE (2010) Marine algal flora of French Polynesia III. Rhodophyta, with additions to the Phaeophyceae and Chlorophyta. Cryptogam Algol 31:3–196Google Scholar
  46. Neethu PV, Suthindhiran K, Jayasri MA (2017) Antioxidant and antiproliferative activity of Asparagopsis taxiformis. Pharm Res 9:238Google Scholar
  47. Nguyen VT, Ueng JP, Tsai GJ (2011) Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci 76:C950–C958PubMedGoogle Scholar
  48. Pistia-Brueggeman G, Hollingsworth RI (2001) A preparation and screening strategy for glycosidase inhibitors. Tetrahedron 57:8773–8778Google Scholar
  49. Pitteloud R, Dubs P (1994) Antioxidants for industrial applications. Chimia 48:417–419Google Scholar
  50. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279PubMedGoogle Scholar
  51. Ragan MA, Glombitza K-W (1986) Phlorotannins, brown algal polyphenols. Progr Phycol Res 4:129–241Google Scholar
  52. Reverter M, Bontemps N, Lecchini D, Banaigs B, Sasal P (2014) Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433:50–61Google Scholar
  53. Reverter M, Saulnier D, David R, Bardon-Albaret A, Belliard C, Tapissier-Bontemps N, Lecchini D, Sasal P (2016) Effects of local Polynesian plants and algae on growth and expression of two immune-related genes in orbicular batfish (Platax orbicularis). Fish Shellfish Immunol 58:82–88PubMedGoogle Scholar
  54. Sanger G, Widjanarko SB, Kusnadi J, Berhimpon S (2013) Antioxidant activity of methanol extract of seaweeds obtained from North Sulawesi. Food Sci Qual Manag 19:63–70Google Scholar
  55. Sanjeewa KA, Lee JS, Kim WS, Jeon YJ (2017) The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym 177:451–459PubMedGoogle Scholar
  56. Sharma BR, Rhyu DY (2014) Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. As Pac J Trop Biomed 4:575–580Google Scholar
  57. Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490Google Scholar
  58. Shen S, Li W, Wang J (2013) A novel and other bioactive secondary metabolites from a marine fungus Penicillium oxalicum 0312F1. Nat Prod Res 27:2286–2291PubMedGoogle Scholar
  59. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy : from nerve toxins to neuroprotection. Eur J Med Chem 70:165–188PubMedGoogle Scholar
  60. Sinha RP, Singh SP, Häder DP (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B 89:29–35PubMedGoogle Scholar
  61. Steinberg PD (1986) Chemical defenses and the susceptibility of tropical marine brown algae to herbivores. Oecologia 69:628–630PubMedGoogle Scholar
  62. Steinberg PD, Paul VJ (1990) Fish feeding and chemical defenses of tropical brown algae in Western Australia. Mar Ecol Prog Ser 58:253–259Google Scholar
  63. Steneck RS, Bellwood DR, Hay ME (2017) Herbivory in the marine realm. Curr Biol 27:R484–R489PubMedPubMedCentralGoogle Scholar
  64. Stiger V, Payri CE (1999) Spatial and seasonal variations in the biological characteristics of two invasive brown algae, Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell (Sargassaceae, Fucales) spreading on the reefs of Tahiti (French Polynesia). Bot Mar 42:295–306Google Scholar
  65. Stiger V, Payri CE (2005) Natural settlement dynamics of a young population of Turbinaria ornata and phenological comparisons with older populations. Aquat Bot 81:225–243Google Scholar
  66. Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409Google Scholar
  67. Stiger-Pouvreau V, Guerard F (2018) Bio-inspired molecules extracted from marine macroalgae: a new generation of active ingredients for cosmetics and human health. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 1. Wiley-VCH, Weinheim, pp 709–746Google Scholar
  68. Stirk WA, Reinecke DL, Van Staden J (2007) Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J Appl Phycol 19:271–276Google Scholar
  69. Suganthy N, Nisha SA, Pandian SK, Devi KP (2013) Evaluation of Gelidiella acerosa, the red algae inhabiting South Indian coastal area for antioxidant and metal chelating potential. Biomed Prev Nutr 3:399–406Google Scholar
  70. Surget G, Stiger-Pouvreau V, Le Lann K, Kervarec N, Couteau C, Coiffard LJ, Cahier K, Guérard F, Poupart N (2015) Structural elucidation, in vitro antioxidant and photoprotective capacities of a purified polyphenolic-enriched fraction from a saltmarsh plant. J Photochem Photobiol B 143:52–60PubMedGoogle Scholar
  71. Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89:464–470PubMedGoogle Scholar
  72. Tawfike AF, Romli M, Clements C, Abbott G, Young L, Schumacher M, Diederich M, Farag M, Edrada-Ebel R (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B 1106:71–83Google Scholar
  73. Thanigaivel S, Chandrasekaran N, Mukherjee A, Thomas J (2016) Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture 464:529–536Google Scholar
  74. Tundis R, Loizzo MR, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Rev Med Chem 10:315–331PubMedGoogle Scholar
  75. Usoltseva RV, Anastyuk SD, Ishina IA, Isakov VV, Zvyagintseva TN, Thinh PD, Zadorozhny PA, Dmitrenok PS, Ermakova SP (2018) Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr Polym 184:260–268PubMedGoogle Scholar
  76. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C (2005) Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 18:CD003639Google Scholar
  77. Van Hees DH, Olsen YS, Wernberg T, Van Alstyne KL, Kendrick GA (2017) Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Mar Biol 164:74Google Scholar
  78. Vasconcelos JB, Vasconcelos ER, Urrea-Victoria V, Bezerra PS, Reis TN, Navarro DMAF, Chow F, Areces AJ, Fujii MT, Cocentino ALM (2018) Antioxidant activity of three seaweeds from tropical reefs of Brazil: potential sources for bioprospecting. J Appl Phycol 31:835–846Google Scholar
  79. Vieira C, Gaubert J, De Clerck O, Payri C, Culioli G, Thomas OP (2017) Biological activities associated to the chemodiversity of the brown algae belonging to genus Lobophora (Dictyotales, Phaeophyceae). Phytochem Rev 16:1–17Google Scholar
  80. Vinayak RC, Sudha SA, Chatterji A (2011) Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential. J Sci Food Agric 91:2471–2476PubMedGoogle Scholar
  81. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982PubMedGoogle Scholar
  82. Yang Z, Wang Y, Wang Y, Zhang Y (2012) Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba. Food Chem 131:617–625Google Scholar
  83. Zakaria NA, Ibrahim D, Sulaiman SF, Supardy A (2011) Assessment of antioxidant activity, total phenolic content and in-vitro toxicity of Malaysian red seaweed, Acanthophora spicifera. J Chem Pharm Res 3:182–191Google Scholar
  84. Zubia M, Payri CE, Deslandes E, Guezennec J (2003) Chemical composition of attached and drift specimens of Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales) from Tahiti, French Polynesia. Bot Mar 46:562–571Google Scholar
  85. Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458Google Scholar
  86. Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043Google Scholar
  87. Zubia M, Fabre MS, Kerjean V, Le Lann K, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009a) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701Google Scholar
  88. Zubia M, Fabre M, Kerjean V, Deslandes E (2009b) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277Google Scholar
  89. Zubia M, Andréfouët S, Payri C (2015) Distribution and biomass evaluation of drifting brown algae from Moorea Lagoon (French Polynesia) for eco-friendly agricultural use. J Appl Phycol 27:1277–1287Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mayalen Zubia
    • 1
    Email author
  • Olivier P. Thomas
    • 2
  • Stéphanie Soulet
    • 1
  • Marina Demoy-Schneider
    • 1
  • Denis Saulnier
    • 3
  • Solène Connan
    • 4
  • Elliot C. Murphy
    • 2
  • Florent Tintillier
    • 1
  • Valérie Stiger-Pouvreau
    • 4
  • Sylvain Petek
    • 1
    • 4
  1. 1.University of French PolynesiaFaa’aFrench Polynesia
  2. 2.Marine Biodiscovery, School of Chemistry and Ryan InstituteNational University of Ireland Galway (NUI Galway)GalwayIreland
  3. 3.Ifremer, UMR EIO 241, Labex CORAILCentre du PacifiqueTaravaoFrench Polynesia
  4. 4.Univ Brest, IRD, CNRS, Ifremer, LEMARPlouzanéFrance

Personalised recommendations