Enhancing antioxidant and antimutagenic activity of the green seaweed Rhizoclonium riparium by bioassay-guided solvent partitioning

  • I. Osuna-Ruíz
  • J. A. Salazar-Leyva
  • C. M. López-Saiz
  • A. Burgos-Hernández
  • E. Hernández-Garibay
  • J. Lizardi-Mendoza
  • M. A. Hurtado-OlivaEmail author


Rhizoclonium riparium is a filamentous green seaweed widely distributed along the coast of Sinaloa. Unfortunately, this seaweed remains unexploited despite having been described as an important source of bioactive molecules. Guided fractionation based on solvent partitioning is a common approach to screen for new natural bioactive compounds. By applying accurate design and interpretation among partition stages, this technique should permit an improvement in the bioactive response of extracts. Thus, the phytochemical composition and bioactivity of R. riparium fractions (FM methanol, FH hexane) obtained from acetone crude extracts (ACE) and sub-fractions from FM (FM1ethylacetate and FM2 water) by solvent partition were assessed. Chlorophyll and carotenoid content decreased during the partition process. The highest antioxidant activity of FM1, as assessed with the DPPH (2,2-diphenyl-1-picrylhydrazyl) test (501.39 Trolox equivalent antioxidant capacity or TEAC), was explained by the high total flavonoid (TFC) and phenol content (TPC). Moreover, a high flavonoid content led to the highest antioxidant activity being observed in FM, as assessed by ABTS·+(2, 2′-azinobis [3-ethylbenzthiazoline]-6-sulphonic acid) reduction (449.59 TEAC). Apart from FM2, the remaining fractions exhibited a strong antimutagenic activity at 0.015 mg per plate (> 40%); FM1 showed the highest antimutagenic bioactivity in both tested bacterial strains (90.4% and 88% for strains TA98 and TA100) of Salmonella typhimurium. Results showed that bioassay-guided fractionation exerted a selective effect on the phytochemical profile that enhanced the antioxidant and antimutagenic activity of the extracts of R. riparium.


Chemopreventive Chlorophyll Flavonoid Natural compounds Polyphenol Chlorophyta 



The authors are grateful to Rosa Stephanie Navarro Peraza, Francisco Flores Cardenas, Maricruz Paredes Magaña, Juan Manuel Flores Alarcón, Jennifer Guadalupe Carrillo Tirado, Evelia Lorena Coss Navarrete, Rolando Inzunza Arroyo, Gloria Berenice Loaiza Aguilar and Karen Lillian Rodríguez for their technical assistance during the collection and analysis of the samples. Special thanks to anonymous reviewers for their comments that improved this manuscript.

Funding information

This research was supported by grant PROFAPI 2013/084 to M.A. Hurtado-Oliva. The authors are especially grateful to Laboratorio de Ecosistemas y Variabilidad Climática and Grant PROFAPI 2013/106 to M. M. Manzano-Sarabia for their invaluable assistance during the sampling of seaweeds. The first author was supported by a fellowship (No. 336726) from CONACYT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Airanthi MK, Hosokawa M, Miyashita K (2011) Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci 76:C104–C111CrossRefGoogle Scholar
  2. Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 76:55–61Google Scholar
  3. Boopathy SB, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:1–18CrossRefGoogle Scholar
  4. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Marine natural products. Nat Prod Rep 36:122–173CrossRefGoogle Scholar
  5. Chebil L, Humeau C, Anthoni J, Dehez F, Engasser JM, Ghoul M (2007) Solubility of flavonoids in organic solvents. J Chem Eng Data 52:1552–1556CrossRefGoogle Scholar
  6. Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT Food Sci Technol 41: 1067–1072Google Scholar
  7. Cho EJ, Rhee SH, Park KY (1997) Antimutagenic and cancer cell growth inhibitory effects of seaweeds. Prev Nutr Food Sci 2:348–353Google Scholar
  8. Cho M, Kang IJ, Won MH, Lee HS, You S (2010) The antioxidant properties of ethanol extracts and their solvent-partitioned fractions from various green seaweeds. J Med Food 13:1232–1239CrossRefGoogle Scholar
  9. de Alencar DB, de Carvalho FCT, Rebouças RH, dos Santos DR, dos Santos Pires-Cavalcante KM, de Lima RL, Baracho BM, Bezerra RM, Viana FA, dos Fernandes RHSV, Sampaio AH, de Sousa OV, Sampaio AH (2016) Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential. Asian Pac J Trop Med 9:372–379CrossRefGoogle Scholar
  10. Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2014) Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res13:163–170Google Scholar
  11. Ferguson LR (2001) Role of plant polyphenols in genomic stability. Mutat Res 475:89–111CrossRefGoogle Scholar
  12. Ferruzzi MG, Blakeslee J (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 27:1–12CrossRefGoogle Scholar
  13. Ferruzzi MG, Böhm V, Courtney PD, Schwartz SJ (2002) Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J Food Sci 67:2589–2595CrossRefGoogle Scholar
  14. Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99:2717–2723CrossRefGoogle Scholar
  15. Ganesan K, Kumar KS, Rao PS (2011) Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Sci Emerg Technol 12:73–78CrossRefGoogle Scholar
  16. Güner A, Köksal C, Erel ŞB, KayalarH NA, Sukatar A, Yavaşoğlu NÜK (2015) Antimicrobial and antioxidant activities with acute toxicity, cytotoxicity and mutagenicity of Cystoseira compressa (Esper) Gerloff & Nizamuddin from the coast of Urla (Izmir, Turkey). Cytotechnology 67:135–143CrossRefGoogle Scholar
  17. Ikken Y, Morales P, Martínez A, Marín ML, Haza AI, Cambero MI (1999) Antimutagenic effect of fruit and vegetable ethanolic extracts against N-nitrosamines evaluated by the Ames test. J Agric Food Chem 47:3257–3264CrossRefGoogle Scholar
  18. Katiyar C, Gupta A, Kanjilal S, Katiyar S (2012) Drug discovery from plant sources: an integrated approach. Ayu 33:10–18CrossRefGoogle Scholar
  19. León AD, Candelaria-Silva SP, Hernández-Almaraz P, León-Tejera H (2007) Géneros de algas marinas tropicales de México: I. Algas verdes. Las Prensas de Ciencia, Facultad de Ciencias, UNAM.171 pGoogle Scholar
  20. Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI (2002) Antioxidant activities of phenolic, pro anthocyanidin, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem 50:5042–5047CrossRefGoogle Scholar
  21. Mansour HA, Mahfouz H, Maher N (2017) Anti-mutagenic potential of algal extracts on chromosomal aberrations in Allium cepa L. Acta Biol Hung 68:137–149CrossRefGoogle Scholar
  22. Marigo G (1973) Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analysis 2:106–110Google Scholar
  23. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Environ Mut Relat Sub 113:173–215Google Scholar
  24. Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH (2008) Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20:367–373CrossRefGoogle Scholar
  25. Müller L, Fröhlich K, Böhm V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 129:139–148CrossRefGoogle Scholar
  26. Ochoa-Izaguirre MJ, Aguilar-Rosas LE, Rosas RA (2007) Catálogo de macroalgas de las lagunas costeras de Sinaloa. Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología. México, DF 117pGoogle Scholar
  27. Osuna-Ruiz I, López-Saiz CM, Burgos-Hernández A, Velázquez C, Nieves-Soto M, Hurtado-Oliva MA (2016) Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharm Biol 54:2196–2210CrossRefGoogle Scholar
  28. Otsuka H (2005) Purification by solvent extraction using partition coefficient. Method Biotechnol 20:269–273Google Scholar
  29. Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315CrossRefGoogle Scholar
  30. Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3:255–266CrossRefGoogle Scholar
  31. Pieters L, Vlietinck AJ (2005) Bioguided isolation of pharmacologically active plant components, still a valuable strategy for the finding of new lead compounds? J Ethnopharmacol 100:57–60CrossRefGoogle Scholar
  32. Przygodzka M, Zielińska D, Ciesarová Z, Kukurová K, Zieliński H (2014) Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT Food Sci Technol 58:321–326CrossRefGoogle Scholar
  33. Siriwardhana N, Lee KW, Jeon YJ, Kim SH, Haw JW (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346Google Scholar
  34. Sivaramakrishnan T, Swain S, Saravanan K, Roy SD, Biswas L, Shalini B (2017) In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south Andaman coast of India, Turk J Fish Aqua Sci17, pp 641–651Google Scholar
  35. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262CrossRefGoogle Scholar
  36. Tenorio-Rodríguez PA, Murillo-Álvarez JI, Campa-Cordova ÁI, Angulo C (2017) Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. J Food Sci Technol 54:422–429CrossRefGoogle Scholar
  37. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246CrossRefGoogle Scholar
  38. Wang L, Park YJ, Jeon YJ, Ryu B (2018) Bioactivities of the edible brown seaweed, Undaria pinnatifida: a review. Aquaculture 495:873–880CrossRefGoogle Scholar
  39. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307–313Google Scholar
  40. Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494CrossRefGoogle Scholar
  41. Zar JH (1999) Biostatistical analysis. Prentice-Hall Inc, New Jersey. 663pGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • I. Osuna-Ruíz
    • 1
  • J. A. Salazar-Leyva
    • 1
  • C. M. López-Saiz
    • 2
  • A. Burgos-Hernández
    • 2
  • E. Hernández-Garibay
    • 3
  • J. Lizardi-Mendoza
    • 4
  • M. A. Hurtado-Oliva
    • 5
    Email author
  1. 1.Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en BiotecnologíaUniversidad Politécnica de SinaloaMazatlánMexico
  2. 2.Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloMexico
  3. 3.Centro Regional de Investigaciones Acuícolas y Pesqueras de EnsenadaInstituto Nacional de Pesca y AcuaculturaEnsenadaMexico
  4. 4.Centro de Investigación en Alimentación y Desarrollo, A.C.HermosilloMexico
  5. 5.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico

Personalised recommendations