Advertisement

Journal of Applied Phycology

, Volume 31, Issue 5, pp 3341–3348 | Cite as

Biological activity of a polyphenolic complex of Arctic brown algae

  • Konstantin Bogolitsyn
  • Liliya Dobrodeeva
  • Anna DruzhininaEmail author
  • Denis Ovchinnikov
  • Anastasia Parshina
  • Elena Shulgina
Article

Abstract

One of the most significant groups of compounds that determine the pharmacological significance of Arctic brown algae is the polyphenols, namely phlorotannins. Brown algae of the family Fucaceae, growing in the waters of the Arctic seas, accumulate a large number of polyphenolic compounds. The pharmacological significance of plant polyphenols is related to their structure; however, it is worth noting that the relationship between the molecular weight and the biological activity of brown algae phlorotannins is still not well understood. Thus, the aim of this work was the isolation and characterization of the polyphenol fraction of the Arctic brown algae Fucus vesiculosus with the following evaluation of the radical scavenging, bacteriostatic, fungistatic, and phagocytic activities. The highest radical scavenging activity (700–900 mg of ascorbic acid g−1 of extract) has fractions whose composition is characterized by the predominance of oligomeric phlorotannins containing from 3 to 8 structural units of phloroglucinol in the range of 374–994 Da. The polyphenol fractions obtained exhibit bacteriostatic effects in 45–85% of the studied pathogenic bacterial cultures. The fungistatic effect reaches a maximum of 35%. The test samples do not possess immunosuppressive properties and do not inhibit the phagocytic activity of neutrophilic granulocytes of human blood.

Keywords

Phaeophyceae Polyphenols Phlorotannins Fractionation Chromatography Biological activity Phagocytic activity Antibacterial properties Mass spectrometry 

Notes

Acknowledgments

The work was carried out using the equipment of the “Arctic” Core Facility Center of the Lomonosov Northern (Arctic) Federal University named after M.V. Lomonosov.

Funding information

The research work was carried out within the financial support of the Ministry of Education and Science of the Russian Federation (Grant No. 4.3273.2017/PCh).

References

  1. Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim SK (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg Med Chem 16:7921–7926CrossRefPubMedGoogle Scholar
  2. Audibert L, Fauchon L, Blanc N, Hauchard D (2010) Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem Anal 21:399–405CrossRefPubMedGoogle Scholar
  3. Bae J-S (2011) Antithrombotic and profibrinolytic activities of phloroglucinol. Food Chem Toxicol 49:1572–1577CrossRefPubMedGoogle Scholar
  4. Barbosa M, Lopes G, Valentão P, Ferreres F, Gil-Izquierdo Á, Pereira DM, Andrade PB (2018) Edible seaweeds’ phlorotannins in allergy: a natural multi-target approach. Food Chem 265:233–241CrossRefPubMedGoogle Scholar
  5. Catarino MD, Silva AMS, Cardoso SM (2017) Fucaceae: a source of bioactive phlorotannins. Int J Mol Sci 18:1327CrossRefPubMedCentralGoogle Scholar
  6. Eom S-H, Lim K-S, Kim Y-M (2013) Potential of Candida utilis to ferment Ecklonia cava by-product for enhanced anti-methicillin-resistant Staphylococcus aureus (MRSA) activity. J Appl Phycol 25:1949–1956CrossRefGoogle Scholar
  7. Ferreres F, Lopes G, Gil-Izquierdo A, Andrade PB, Sousa C, Mouga T, Valentão P (2012) Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar Drugs 10:2766–2781PubMedPubMedCentralGoogle Scholar
  8. Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Tech 22:315–326CrossRefGoogle Scholar
  9. Hermund DB, Plaza M, Turner C, Jonsdottir R, Kristinsson HG, Jacobsen C, Nielsen KF (2018) Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. J Appl Phycol 240:904–909Google Scholar
  10. Hermund DB, Yesiltas B, Honold P, Jónsdóttir R, Kristinsson HG, Jacobsen C (2015) Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. J Funct Food 19:828–841CrossRefGoogle Scholar
  11. Jung HA, Oh SH, Choi JS (2010) Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg Med Chem Lett 20:3211–3215CrossRefPubMedGoogle Scholar
  12. Jung HA, Roy A, Jung JH, Choi JS (2017) Evaluation of the inhibitory effects of eckol and dieckol isolated from edible brown alga Eisenia bicyclis on human monoamine oxidases A and B. Arch Pharm Res 40:480–491CrossRefPubMedGoogle Scholar
  13. Kang M-C, Kim E-A, Kang S-M, Wijesinghe WAJP, Yang X, Kang N-L, Jeon Y-J (2012) Thermostability of a marine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava. Algae 27:205–213CrossRefGoogle Scholar
  14. Kantz K, Singleton VL (1990) Isolation and determination of polymeric polyphenols using Sephadex LH-20 and analysis of grape tissue extracts. Am J Enol Vitic 41:223–228Google Scholar
  15. Kim HJ, Dasagrandhi C, Kim SH, Kim BG, Eom SH, Kim YM (2018) In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant listeria monocytogenes. Ind J Microbiol 58:105–108CrossRefGoogle Scholar
  16. Kim SK, Himaya SWA (2011) Medicinal effects of phlorotannins from marine brown algae. Adv Food Nutr Res 64:97–108CrossRefPubMedGoogle Scholar
  17. Klindukh MP, Obluchinskaya ED (2013) Sravnitel’noe issledovanie himicheskogo sostava buryh vodoroslej Fucus vesiculosus i Ascophyllum nodosum. Vestnik MGTU 16:466–471Google Scholar
  18. Kojima-Yuasa A (2018) Biological and pharmacological effects of polyphenolic compounds from Ecklonia cava. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols: mechanisms of action in human health and disease, 2nd edn. Academic Press, London, pp 41–52CrossRefGoogle Scholar
  19. Kong CS, Kim JA, Yoon NY, Kim SK (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658CrossRefPubMedGoogle Scholar
  20. Laport MS, Marinho PR, Santos OCS, Almeida P, Romanos MTV, Muricy G, Brito MAVP, Giambiagi-deMarval M (2012) Antimicrobial activity of marine sponges against coagulasenegative staphylococci isolated from bovine mastitis. Vet Microbiol 155:362–368CrossRefPubMedGoogle Scholar
  21. Le Lanm K, Surget G, Couteau C, Coiffard L, Cérantola S, Gaillard F, Larnico M, Zubia M, Guérard F, Poupart N, Stiger-Pouvreau V (2016) Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J Appl Phycol 28:3547–3559CrossRefGoogle Scholar
  22. Lee MH, Lee KB, Oh SM, Lee BH, Chee HY (2010) Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. J Korean Soc Appl Biol Chem 53:504–507CrossRefGoogle Scholar
  23. Lee SH, Jeon YJ (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoter 86:129–136CrossRefGoogle Scholar
  24. Lezcano V, Fernández C, Parodi ER, Morelli S (2017) Antitumor and antioxidant activity of the freshwater macroalga Cladophora surera. J Appl Phycol 30:2913–2921CrossRefGoogle Scholar
  25. Li Y, Fu X, Duan D, Liu X, Xu J, Gao X (2017) Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar Drugs 15:49CrossRefPubMedCentralGoogle Scholar
  26. Li Y, Qian Z-J, Kim M-M, Kim S-K (2011a) Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. J Food Biochem 35:357–369CrossRefGoogle Scholar
  27. Li YX, Wijesekara I, Li Y (2011b) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224CrossRefGoogle Scholar
  28. Liu H, Gu L (2012) Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation end products by scavenging reactive carbonyls. J Ag Food Chem 60:1326–1334CrossRefGoogle Scholar
  29. Lopes G, Barbosa M, Vallejo F, Izquierdo AG, Andrade PB, Valentao P, Pereira DM, Ferreres F (2018) Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: chemical approach by HPLC-DAD-ESI/MSn and UPLC-ESI-QTOF/MS. Algal Res 29:113–120CrossRefGoogle Scholar
  30. Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, Bernardo J, Mouga T, Valentão P (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 7:1–9CrossRefGoogle Scholar
  31. Mann ER, Landy JD, Bernardo D, Peake ST, Hart AL, Al-Hassi HO, Knight SC (2013) Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol Lett 150:30–40CrossRefPubMedGoogle Scholar
  32. Nagayama N, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893CrossRefGoogle Scholar
  33. Nair D, Vanuopadath M, Balasubramanian A, Iyer A, Ganesh S, Anil AN, Vikraman V, Pillai P, Bose C, Nair BG, Pai JG, Nair SS (2019) Phlorotannins from Padina tetrastromatica: structural characterisation and functional studies. J Appl Phycol.  https://doi.org/10.1007/s10811-019-01792-y
  34. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from brown alga Eisenia bicyclis. Fish Sci 62:923–926CrossRefGoogle Scholar
  35. Paterson DL (2006) Resistance in Gram-negative bacteria: Enterobacteriaceae. Am J Med 119:20–28CrossRefGoogle Scholar
  36. Puspita M, Déniel M, Widowati I, Radjasa OK, Douzenel P, Marty C, Vandanjon L, Bedoux G, Bourgougnon N (2017) Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt. J Appl Phycol 29:2521–2537CrossRefGoogle Scholar
  37. Ragan MA, Jensen A (1978) Quantitative studies on brown algal phenols. II Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus. J Exp Mar Biol Ecol 34:245–258CrossRefGoogle Scholar
  38. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:129–241Google Scholar
  39. Ryu YB, Jeong HJ, Yoon SY, Park JY, Kim YM, Park SJ, Rho MC, Kim SJ, Lee WS (2011) Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. J Agric Food Chem 59:6467–6473CrossRefPubMedGoogle Scholar
  40. Sanjeewa KKA, Kim E-A, Son K-T, Jeon Y-J (2016) Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B 162:100–105CrossRefPubMedGoogle Scholar
  41. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20:705–711CrossRefGoogle Scholar
  42. Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS (2015) Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar Drugs 13:3422–3442CrossRefPubMedGoogle Scholar
  43. Tong J, Wu WN, Kong X, Wu PF, Tian L, Du W, Fang M, Zheng F, Chen JG, Tan Z, Gong F (2011) Acid-sensing ion channels contribute to the effect of acidosis on the fuction of dendritic cells. J Immunol 186:3686–3692CrossRefPubMedGoogle Scholar
  44. Wang T, Jónsdóttir R, Liu H (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Ag Food Chem 60:5874–5883CrossRefGoogle Scholar
  45. Wang T, Jónsdóttir R, Olafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248CrossRefGoogle Scholar
  46. Wisespongpand P, Kuniyoshi M (2003) Bioactive phloroglucinols from the brown alga Zonaria diesingiana. J Appl Phycol 15:225–228CrossRefGoogle Scholar
  47. Yoon NY, Lee SH, Kim S-K (2009) Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J Funct Food 1:331–335CrossRefGoogle Scholar
  48. Yoon NY, Lee S-H, Wijesekara I, Kim S-K (2011) In vitro and intracellular antioxidant activities of brown alga Eisenia bicyclis. Fish Aquat Sci 14:179–185Google Scholar
  49. Zenthoefer M, Geisen U, Hofmann-Peiker K, Fuhrmann M, Kerber J, Kirchhöfer R, Hennig S, Peipp M, Geyer R, Piker L, Kalthoff H (2017) Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation. J Appl Phycol 29:2021–2037CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Konstantin Bogolitsyn
    • 1
    • 2
  • Liliya Dobrodeeva
    • 3
  • Anna Druzhinina
    • 1
    Email author
  • Denis Ovchinnikov
    • 1
  • Anastasia Parshina
    • 1
  • Elena Shulgina
    • 1
  1. 1.Northern (Arctic) Federal University named after M.V. LomonosovArkhangelskRussia
  2. 2.Institute of Ecological Problems of the North, FCIARcticRASArkhangelskRussia
  3. 3.Institute of Physiology of Natural Adaptation, FCIARcticRASArkhangelskRussia

Personalised recommendations