Advertisement

Journal of Applied Phycology

, Volume 31, Issue 5, pp 3317–3329 | Cite as

Transcriptomic analysis under ethylene precursor treatment uncovers the regulation of gene expression linked to sexual reproduction in the dioecious red alga Pyropia pseudolinearis

  • Ryo Yanagisawa
  • Naoki Sekine
  • Hiroyuki Mizuta
  • Toshiki UjiEmail author
Article

Abstract

The marine red algal genus Pyropia, class Bangiophyceae, includes dioecious and monoecious species; however, the molecular mechanisms underlying control of their sexual reproduction are still poorly understood. In the present study, we demonstrated that application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), promoted the formation of spermatangia and parthenosporangia in male and female gametophytes, respectively, of the dioecious species Pyropia pseudolinearis. In addition, we determined expression profiles of ACC-responsive genes in the gametophytes during sexual reproduction using RNA-Seq and quantitative real-time PCR (qRT-PCR). Genes involved in the regulation of cell division and cell wall organization, such as high-mobility group (PpHMG) and glycosyltransferase family (PpGT14), were found to be upregulated in male and female gametophytes treated with ACC. In addition, the relatively rapid ACC-response of the vesicular-trafficking-related genes, flotillin (PpFLOT), charged multivesicular body protein 5 (PpCHMP5), and peptidase family S8 (PpS8) was shown to occur during male and female sexual reproduction. Expression levels of these six genes in the monoecious species P. yezoensis, which are homologs to ACC-responsive genes in P. pseudolinearis, also increased in gametophytes treated with ACC. These findings could provide new insights into the ACC-regulation of the sexual life cycle in Pyropia species.

Keywords

Pyropia Red algae Reproduction 1-aminocyclopropane-1-carboxylic acid Plant growth regulator 

Notes

Acknowledgments

We are grateful to Drs. Katsutoshi Arai and Takafumi Fujimoto (Hokkaido University, Japan) for kindly providing the CLC Genomics Workbench. This study was supported by grant-in-aid for the Young Scientists (B) (16 K18740 to T.U.) from the Japan Society for the Promotion of Science (JSPS), and grant-in-aid from the Akiyama Life Science Foundation (T.U.).

Supplementary material

10811_2019_1808_MOESM1_ESM.docx (650 kb)
ESM 1 (DOCX 650 kb)

References

  1. Adoro S, Park KH, Bettigole SE, Lis R, Shin HR, Seo H, Kim JH, Knobeloch KP, Shim JH, Glimcher LH (2017) Post-translational control of T cell development by the ESCRT protein CHMP5. Nat Immunol 18:780–790CrossRefPubMedGoogle Scholar
  2. Antosch M, Mortensen SA, Grasser KD (2012) Plant proteins containing high mobility group box DNA-binding domains modulate different nuclear processes. Plant Physiol 159:875–883CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antosch M, Schubert V, Holzinger P, Houben A, Grasser KD (2015) Mitotic lifecycle of chromosomal 3xHMG-box proteins and the role of their N-terminal domain in the association with rDNA loci and proteolysis. New Phytol 208:1067–1077CrossRefPubMedGoogle Scholar
  4. Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brandstadter J, Rossbach C, Theres K (1994) The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192:69–74PubMedGoogle Scholar
  6. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collen J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang Z-Y, Yan J, Yarish C, Zauner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 114:E6361–E6370CrossRefPubMedPubMedCentralGoogle Scholar
  7. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
  8. Chamberlain AHL, Evans LV (1973) Aspects of spore production in the red alga Ceramium. Protoplasma 76:139–159CrossRefGoogle Scholar
  9. Cole K, Sheath RG (1980) Ultrastructural changes in major organelles during spermatial differentiation in Bangia (Rhodophyta). Protoplasma 102:253–279CrossRefGoogle Scholar
  10. Cole KM, Park CM, Reid PE, Sheath RG (1985) Comparative studies on the cell walls of sexual and asexual Bangia atropurpurea (Rhodophyta) .I. Histochemistry of polysaccharides. J Phycol 21:585–592CrossRefGoogle Scholar
  11. Cortes F, Pastor N, Mateos S, Dominguez I (2003) Roles of DNA topoisomerases in chromosome segregation and mitosis. Mutat Res Rev Mutat 543:59–66CrossRefGoogle Scholar
  12. Cosgrove DJ (2000) loosening of plant cell walls by expansins. Nature 407:321–326CrossRefPubMedGoogle Scholar
  13. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344CrossRefPubMedGoogle Scholar
  14. Garcia-Jimenez P, Robaina RR (2015) On reproduction in red algae: further research needed at the molecular level. Front Plant Sci 6:93PubMedPubMedCentralGoogle Scholar
  15. Garcia-Jimenez P, Brito-Romano O, Robaina RR (2016) Occurrence of jasmonates during cystocarp development in the red alga Grateloupia imbricata. J Phycol 52:1085–1093CrossRefGoogle Scholar
  16. Garcia-Jimenez P, Montero-Fernández M, Robaina RR (2017) Molecular mechanisms underlying Grateloupia imbricata (Rhodophyta) carposporogenesis induced by methyl jasmonate. J Phycol 53:1340–1344CrossRefPubMedGoogle Scholar
  17. Garcia-Jimenez P, Montero-Fernández M, Robaina RR (2018) Analysis of ethylene-induced gene regulation during carposporogenesis in the red seaweed Grateloupia imbricata (Rhodophyta). J Phycol 54:681–689CrossRefPubMedGoogle Scholar
  18. Guzman-Urióstegui A, García-Jiménez P, Marián F, Robledo D, Robaina R (2002) Polyamines influence maturation in reproductive structures of Gracilaria cornea (Gracilariales, Rhodophyta). J Phycol 38:1169–1175CrossRefGoogle Scholar
  19. Guzman-Urióstegui A, Robaina RR, Freile-Pelegri Y, Robledo D (2012) Polyamines increase carpospore output and growth during in vitro cultivation of Hydropuntia cornea. Biotechnol Lett 34:755–761CrossRefPubMedGoogle Scholar
  20. Har-Vardi I, Mali R, Breietman M, Sonin Y, Albotiano S, Levitas E, Potashnik G, Priel E (2007) DNA topoisomerases I and II in human mature sperm cells: characterization and unique properties. Hum Reprod 22:2183–2189CrossRefPubMedGoogle Scholar
  21. Hawkes MW (1990) Reproductive strategies. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 455–476Google Scholar
  22. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208CrossRefPubMedGoogle Scholar
  23. Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kapanidou M, Curtis NL, Bolanos-Garcia VM (2017) Cdc20: at the crossroads between chromosome segregation and mitotic exit. Trends Biochem Sci 42:193–205CrossRefPubMedGoogle Scholar
  25. Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Mergaert P, Kondorosi E (2011) Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana. PLoS One 6:e20618CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim NG (2011) Culture study on the hybrid by interspecific crossing between Porphyra pseudolinearis and P. dentata (Bangiales, Rhodophyta), two dioecious species in culture. Algae 26:79–86CrossRefGoogle Scholar
  27. Kim SH, Kim GH (1999) Cell-cell recognition during fertilization in the red alga, Aglaothamnion oosumiense (Ceramiaceae, Rhodophyta). Hydrobiologia 399:81–89CrossRefGoogle Scholar
  28. Lee Y, El Andaloussi S, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134CrossRefGoogle Scholar
  29. Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS (2018) Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta. Mol Biol Evol 1:1869–1886CrossRefGoogle Scholar
  30. Liu XJ, Bogaert K, Engelen AH, Leliaert F, Roleda MY, De Clerck O (2017) Seaweed reproductive biology: environmental and genetic controls. Bot Mar 60:89–108CrossRefGoogle Scholar
  31. Marchant R, Robards AW (1968) Membrane systems associated with the plasmalemma of plant cells. Ann Bot 32:457–471CrossRefGoogle Scholar
  32. Meshi T, Taoka K, Iwabuchi M (2000) Regulation of histone gene expression during the cell cycle. Plant Mol Biol 43:643–657CrossRefPubMedGoogle Scholar
  33. Miyazaki JH, Yang SF (1987) Metabolism of 5-methylthioribose to methionine. Plant Physiol 84:277–281CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis). PLoS One 8:e57122CrossRefPubMedPubMedCentralGoogle Scholar
  35. Neefus CD, Mathieson AC, Bray TL, Yarish C (2008) The distribution, morphology, and ecology of three introduced asiatic species of Porphyra (Bangiales, Rhodophyta) in the northwestern Atlantic. J Phycol 44:1399–1414CrossRefPubMedGoogle Scholar
  36. Otto GP, Nichols BJ (2011) The roles of flotillin microdomains-endocytosis and beyond. J Cell Sci 124:3933–3940CrossRefPubMedGoogle Scholar
  37. Ouriques LC, Schmidt EC, Bouzon ZL (2012) The mechanism of adhesion and germination in the carpospores of Porphyra spiralis var. amplifolia (Rhodophyta, Bangiales). Micron 43:269–277CrossRefPubMedGoogle Scholar
  38. Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GTS, Houben A, Grasser KD (2011) The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. New Phytol 192:577–589CrossRefPubMedGoogle Scholar
  39. Peel S, Macheboeuf P, Martinelli N, Weissenhorn W (2011) Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem Sci 36:199–210CrossRefPubMedGoogle Scholar
  40. Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A (2014) Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 281:2214–2227CrossRefPubMedGoogle Scholar
  41. Potapova T, Gorbsky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel) 6:E12Google Scholar
  42. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collections of algae, Proc US-Japan Conf, Hakone, September 1966. Jpn Soc Plant Physiol Tokyo, pp 63–75Google Scholar
  43. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509CrossRefPubMedGoogle Scholar
  44. Sacramento AT, García-Jiménez P, Alcázar R, Tiburcio AF, Robaina RR (2004) Influence of polyamines on the sporulation of Grateloupia (Halymeniaceae, Rhodophyta). J Phycol 40:887–894CrossRefGoogle Scholar
  45. Shim E, Shim J, Klochkova TA, Han JW, Kim GH (2012) Purification of a sex-specific lectin involved in gamete binding of Aglaothamnion callophyllidicola (Rhodophyta). J Phycol 48:916–924CrossRefPubMedGoogle Scholar
  46. Stros M, Launholt D, Grasser KD (2007) The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 64:2590–2606CrossRefPubMedGoogle Scholar
  47. Taylor AA, Horsch A, Rzepczyk A, Hasenkampf CA, Riggs CD (1997) Maturation and secretion of a serine proteinase is associated with events of late microsporogenesis. Plant J 12:1261–1271CrossRefPubMedGoogle Scholar
  48. Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tsekos I, Schnepf E (1991) Acid phosphatase activity during spore differentiation of the red algae Gigartina teedii and Chondria tenuissima. Plant Syst Evol 176:35–51CrossRefGoogle Scholar
  50. Uji T, Monma R, Mizuta H, Saga N (2012) Molecular characterization and expression analysis of two Na+/H+ antiporter genes in the marine red alga Porphyra yezoensis. Fish Sci 78:985–991CrossRefGoogle Scholar
  51. Uji T, Matsuda R, Takechi K, Takano H, Mizuta H, Takio S (2016) Ethylene regulation of sexual reproduction in the marine red alga Pyropia yezoensis (Rhodophyta). J Appl Phycol 28:3501–3509CrossRefGoogle Scholar
  52. Xie SP, Lam E (1994) Abundance of nuclear-DNA topoisomerase-II is correlated with proliferation in Arabidopsis thaliana. Nucleic Acids Res 22:5729–5736CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Marine Life Science, Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan

Personalised recommendations