Journal of Applied Phycology

, Volume 31, Issue 5, pp 3201–3212 | Cite as

Antibacterial activity of Caulerpa racemosa against pathogenic bacteria promoting “ice-ice” disease in the red alga Gracilaria verrucosa

  • Elmi Nurhaidah ZainuddinEmail author
  • Hilal Anshary
  • Huyyirnah Huyyirnah
  • Ridha Hiola
  • Dolores V. Baxa


Increasing ocean temperatures associated with climate change have triggered the occurrence of diseases in marine resources such as macroalgae or seaweed. “Ice-ice” is one of the most devastating diseases affecting economically important seaweeds such as Gracilaria and Eucheuma. In this study, we investigate the bacterial composition of diseased and healthy Gracilaria verrucosa, a red seaweed cultured in brackish water ponds in Takalar, Indonesia. Morphologic and phenotypic characteristics showed that the isolates from diseased Gracilaria belong to various genera: Vibrio, Chromobacterium, Flavobacterium, Pseudomonas, and Achromobacter. Several bacteria were also isolated from healthy Gracilaria including Corynebacterium, Serratia, Shigella, Micrococcus, Proteus, and Flavobacterium. Using Koch’s postulates, bacterial pathogenicity was established by bath exposure of naïve G. verrucosa to each of the bacteria isolated from diseased Gracilaria resulting in symptom characteristic of “ice-ice” disease. The antibacterial property of the green seaweed Caulerpa racemosa against the pathogenic bacteria was assessed using extracts that were prepared with solvents of various polarities such as hexane, chloroform, ethyl acetate, methanol, and methanol-water. The highest antibacterial activity was observed in methanol extracts Caulerpa while extracts using the other solvents showed moderate to low activities. These findings demonstrate the potential of Caulerpa to inactivate bacterial pathogens associated with “ice-ice” disease.


Gracilaria verrucosa “Ice-ice” bacteria Antibacterial activity Caulerpa racemosa 


Funding information

This study received support from the Ministry of Research, Technology and Higher Education of the Republic of Indonesia through the World Class Professor Program Scheme A (N0.168.A9/D2/KP/2017).


  1. Achmad M, Alimuddin, Widyastuti U, Sukenda, Suryanti E, Harris E (2016) Molecular identification of new bacterial causative agent of ‘ice-ice’ disease on seaweed Kappaphycus alvarezii. PeerJ Prepr 4:e2016v1.
  2. Agbo JAC, Moss M (1979) The isolation and characterization of agarolytic bacteria from a lowland river. J Gen Microbiol 115:355–368CrossRefGoogle Scholar
  3. Anggadiredja JT, Zatnika A, Purwoto H, Istini S (2008) Rumput Laut. Penebar Swadaya, BogorGoogle Scholar
  4. Aris M (2011) Identifikasi, patogenisitas bakteri dan pemanfaatan gen 16s-rRNA untuk deteksi penyakit ice-ice pada budidaya rumput laut (Kappaphycus alvarezii). Ph.D. Thesis, Postgraduate School. Institute Bogor Agriculture. Accessed in July 2017
  5. Arunkumar K, Sivakumar SR, Rengasamy R (2010) Review on bioactive potential in seaweeds (marine macroalgae): a special emphasis on bioactivity of seaweeds against plant pathogens. Asian J Plant Sci 9:227–240CrossRefGoogle Scholar
  6. Ask EI, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–277CrossRefGoogle Scholar
  7. Bansemir A, Blume M, Schroder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84CrossRefGoogle Scholar
  8. Barrow GI, Feltham RKA (eds) (2003) Cowan and steels manual for identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  9. BIG (2013) Panjang garis pantai Indonesia capai 99.000 kilometer. Badan Informasi Geospasial (BIG). Accessed in September 2017
  10. Bixler H, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  11. Bulleri F, Benedetti-Cecchi L, Acunto S, Cinelli F, Hawkins SJ (2002) The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J Exp Mar Biol Ecol 267:89–106CrossRefGoogle Scholar
  12. Cappucino JG, Sherman N (1986) Microbiology: a laboratory manual (2nd edition). Benjamin/Cummings Publishing Company Inc., ‎San FranciscoGoogle Scholar
  13. Chanda S, Dave R, Kaneria M, Nagani K (2010) Seaweeds: a novel, untapped source of drugs from sea to combat infectious diseases. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex pp 473–480Google Scholar
  14. Correa JA, Craigie JS (1991) Algal pathology. In: Garcia-Reina G and Pedersen M (eds) Proceedings of the COST-48 workshop. Seaweed cellular biotechnology, physiology and intensive cultivation. Universidad de Las Palmas de Gran Canaria, Las Palma, pp 67–82Google Scholar
  15. Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T (2014) Bacterial pathogens, virulence mechanism and host defense in marine macroalgae. Environ Microbiol 16:925–938CrossRefPubMedGoogle Scholar
  16. Ernawati (2007) Lapisan dan fraksinisasi senyawa antibakteri dari rumput laut bulu ayam (Caulerpa sertularioides). Institut Pertanian Bogor, Bogor, hal, pp 16–19Google Scholar
  17. Esquer-Miranda E, Nieves-Soto M, Rivas-Vega ME, Miranda-Baeza A, Piña-Valdez P (2016) Effects of methanolic macroalgae extracts from Caulerpa sertularioides and Ulva lactuca on Litopenaeus vannamei survival in the presence of Vibrio bacteria. Fish Shellfish Immunol 51:346–350CrossRefPubMedGoogle Scholar
  18. Etcherla M, Narasimha Rao GM (2014) In vitro study of antimicrobial activity in marine algae Caulerpa taxifolia and Caulerpa racemosa (C. Agardh). Int J Appl Biol Pharm Technol 5:57–72Google Scholar
  19. FAO (2015) The state of food insecurity in the world. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, RomeGoogle Scholar
  20. FAO (2016) The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, RomeGoogle Scholar
  21. Fraschetti S, Terlizzi A, Bevilacqua S, Boero F (2006) The distribution of hydroids (Cnidaria, Hydrozoa) from micro-to macro-scale: spatial patterns on habitat forming algae. J Exp Mar Biol Ecol 339:148–158CrossRefGoogle Scholar
  22. Fujita Y, Zenitani B, Nakao Y, Matsubara T (1972) Bacteriological studies on diseases of cultured laver. II bacteria associated with diseased laver. Bull Jap Soc Sci Fish 38:565–569CrossRefGoogle Scholar
  23. Gachon CM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640CrossRefPubMedGoogle Scholar
  24. Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90:912–920CrossRefPubMedGoogle Scholar
  25. Hurtado AQ, Critchley AT, Trespoey A, Bleicher-Lhonneur G (2006) Occurrence of Polysiphonia epiphytes in Kappaphycus farms at Calaguas Island, Camarines Norte, Philippines. J Appl Phycol 18:301–306CrossRefGoogle Scholar
  26. Indriani H, Sumiarsih E (1992) Budidaya, Pengolahan, dan Pemasaran Rumput Laut. Penebar Swadaya, JakartaGoogle Scholar
  27. Ishikawa Y, Saga N (1989) The diseases of economically valuable seaweeds and pathology in Japan. In: Miyachi S, Karube I, Ishida Y (eds) Current topics in marine biotechnology. Fuji Technology Press, Tokyo, pp 215–218Google Scholar
  28. Jaffray AE (1998) The investigation of bacterial pathogens of the red macroalga Gracilaria gracilis and its response to bacterial infection. Thesis Doctor of Philosophy. University of Cape Town, South AfricaGoogle Scholar
  29. Jamilah L (2013) Pemanfaatan rumput laut Gracilaria verrucosa sebagai produk bakto agar dan aplikasinya dalam media pertumbuhan mikroorganisme. Skripsi Sarjana, Institut Pertanian Bogor, BogorGoogle Scholar
  30. Kandhasamy M, Arunachalam KD (2008) Evaluation of in-vitro antibacterial property of seaweeds of southeast coast of India. Afr J Biotechnol 7:1958–1961CrossRefGoogle Scholar
  31. Karthikeyan K, Shweta K, Jayanthi G, Prabhu K, Thirumaran G (2015) Antimicrobial and antioxidant potential of selected seaweeds from Kodinar, southern coast of Saurashtra, Gujarat, India. J App Pharm Sci 5:35–40CrossRefGoogle Scholar
  32. Kasim M (2016) Makro Alga. Penebar Swadaya, JakartaGoogle Scholar
  33. Kim SK, Chojnacka K (2015) Marine algae extracts: processes, products, and applications. WILEY–VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  34. KKP (2013) Laporan Tahunan Kementerian Kelautan dan Perikanan. Kementerian Kelautan dan Perikanan, Republik IndonesiaGoogle Scholar
  35. KKP (2016) Laporan Tahunan Kementerian Kelautan dan Perikanan. Kementerian Kelautan dan Perikanan, Republik IndonsiaGoogle Scholar
  36. Largo, DB (2002) Recent developments in seaweed diseases. In: Hurtado AQ, Guanzon Jr NG, de Castro-Mallare TR, Luhan MRJ (eds.) Proceedings of the National Seaweed Planning Workshop, held on August 2–3, 2001, SEAFDEC Aquaculture Department, Tigbauan, Iloilo. pp. 35–42Google Scholar
  37. Largo DB, Fukami K, Nishijima T (1995a) Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:545–554CrossRefGoogle Scholar
  38. Largo DB, Fukami K, Nishijima T, Ohno M (1995b) Laboratory- induced development of the ice-ice disease of the farmed red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:539–543CrossRefGoogle Scholar
  39. Largo DB, Fukami K, Nishijima T (1999) Time-dependent attachment mechanism of bacterial pathogen during ‘ice-ice’ infection in Kappaphycus alvarezii (Gigartinales, Rhodophyta). J Appl Phycol 11:129–136CrossRefGoogle Scholar
  40. Loureiro RR, Reis RP, Critchley AT (2009) In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown algae Ascophyllum nodosum (Fucaceae, Chlorophyta). J Appl Phycol 22:101–110CrossRefGoogle Scholar
  41. Maheswaran ML, Padmavathy S, Gunalan B (2013) Screening and characterization of marine seaweeds and its antimicrobial potential against fish pathogens. Int J Fish Aquat Stud 1:1–13Google Scholar
  42. Musa N, Wei LS (2008) Bacteria attached on cultured seaweed Gracilaria changii at Mengabang Telipot, Terengganu. Acad J Plant Sci 1:1–4Google Scholar
  43. Nagaraj SR, Osborne JW (2014) Bioactive compounds from Caulerpa racemosa as a potent larvicidal and antibacterial agent. Front Biol 9:300–305CrossRefGoogle Scholar
  44. Nasution MH (2005) Patogenitas beberapa isolat bakteri terhadap rumput laut Kappaphycus alvarezii asal Pulau Pari, Kepulauan Seribu. Fakultas Biologi. Universitas Nasional Jakarta, JakartaGoogle Scholar
  45. Nurjanna (2008) Identifikasi bakteri yang diisolasi dari rumput laut yang terserang penyakit ‘ice-ice’. Buletin Teknik Litkayasa Akuakultur 7(1):79–82Google Scholar
  46. Radhika D, Veerabahu C, Priya R (2012) Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian J Pharm Clin Res 5:89–90Google Scholar
  47. Raj A, Jegan S, Chandrasekaran M, Venkatesalu V (2017) Phytochemical analysis and comparison of antibacterial activity of various solvent extracts of Caulerpa racemosa on multidrug resistant bacterial strains. Sciencia Acta Xaveriana 8:43–57Google Scholar
  48. Rusli A, Metusalach TMM, Salengke S (2016) Analysis of bioactive compounds of Caulerpa recemosa, Sargassum sp. and Gracillaria verrucosa using different solvents. Jurnal Teknologi (Sciences and Engineering) 78:15–19Google Scholar
  49. Salem WM, Galal H, Nasr El-deen F (2011) Screening for antibacterial activities in some marine algae from the Red Sea (Hurghada, Egypt). Afr J Microbiol Res 5:2160–2167CrossRefGoogle Scholar
  50. Sampulawa S, Awan A, Rumahlatu D (2017) Efektivitas ekstrak kloroform Caulerpa racemosa dalam menghambat pertumbuhan bakteri patogen penyebab infeksi saluran pernapasan akut (ISPA). Jurnal Biologi Papua 9:14–19Google Scholar
  51. Saraswati SA, Darmasetiyawana IMS (2016) Identifikasi Bakteri pada Rumput Laut Euchema spinosum yang terserang penyakit Ice-ice di Perairan Pantai Kutuh. Journal of Marine and Aquatic Sciences 2:11–15CrossRefGoogle Scholar
  52. Schroeder DC, Jaffer MA, Coyne VE (2003) Investigation of the role of a β (1–4) agarase produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology 149:2919–2929CrossRefPubMedGoogle Scholar
  53. Selim S, Amin A, Hassan S, Hagazey M (2015) Antibacterial, cytotoxicity and anticoagulant activities from Hypnea esperi and Caulerpa prolifera marine algae. Pak J Pharm Sci 28:525–530PubMedGoogle Scholar
  54. Seno GMM, Solares FRT, Tan AER (2004) Antibacterial and antifungal activity of lato (Caulerpa racemosa). Online abstract. The science and technology information network of the Philippines (SCINET-PHIL). Accessed in October 2018Google Scholar
  55. Stabili L, Fraschetti S, Acquaviva MI, Cavallo RA, De Pascali SA, Fanizzi FP, Gerardi C, Narracci M, Rizzo L (2016) The potential exploitation of the Mediterranean invasive alga Caulerpa cylindracea: can the invasion be transformed into a gain? Mar Drugs 14:210CrossRefPubMedCentralGoogle Scholar
  56. Sun X, He Y, Xu N, Xia Y, Liu Z (2012) Isolation and identification of two strains of pathogenic bacteria and their effects on the volatile metabolites of Gracilariopsis lemaneiformis (Rhodophyta). J Appl Phycol 24:277–284CrossRefGoogle Scholar
  57. Syafitri E, Prayitno SB, Ma’ruf WF, Radjasa OK (2017) Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia. IOP Conference Series: Earth and Environmental Science 55:012044CrossRefGoogle Scholar
  58. Taskin E, Taskin E, Ozturk M (2012) Antibacterial activities of some seaweeds from northern Cyprus against some food-related pathogens. Asian Journal of Biological Sciences 5:250–256CrossRefGoogle Scholar
  59. Utami FP (2014) Aktivitas antibakteri ekstrak anggur laut Caulerpa racemosa terhadap bakteri penyebab demam tifoid dan gastroenteritis. BSc. Project. Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, BogorGoogle Scholar
  60. Wang G, Shuai L, Li Y, Lin W, Zhao X, Duan D (2008) Phylogenetic analysis of epiphytic marine bacteria on hole-rotten diseased sporophytes of Laminaria japonica. J Appl Phycol 20:403–409CrossRefGoogle Scholar
  61. Yang H, Liu DQ, Liang TJ, Li J, Liu AH, Yang P, Lin K, Yu XQ, Guo YW, Mao SC, Wang B (2014) Racemosin C, a novel minor bisindole alkaloid with protein tyrosine phosphatase-1B inhibitory activity from the green alga Caulerpa racemosa. J Asian Nat Prod Res 16:1158–1165CrossRefPubMedGoogle Scholar
  62. Yulianto K, Mira S (2009) Budidaya makro algae Kappaphycus Alvarezii (Doty) secara vertikal dan gejala penyakit “ice-ice” di perairan Pulau Pari. Oseanologi dan Limnologi di Indonesia 35:323–332Google Scholar
  63. Zainuddin EN (2006) Chemical and biological investigations of selected cyanobacteria (blue-green algae). Ph.D. Thesis. University Greifswald, GermanyGoogle Scholar
  64. Zainuddin EN (2010a) Preliminary screening of marine algae from South Sulawesi coast for cytotoxic activity using brine shrimp Artemia salina lethality test. Proceedings of International Conference on Medicinal Plants. Surabaya, Indonesia, pp 622–632Google Scholar
  65. Zainuddin EN (2010b) Antibacterial potential of marine algae collected from South Sulawesi coast against human pathogens. Proceedings of International Conference and Talkshow on Medicinal Plants. BPPT, Jakarta, Indonesia, pp 115–127Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Marine Science and FisheriesHasanuddin UniversityMakassarIndonesia
  2. 2.Department of Anatomy, Physiology and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations