Advertisement

Journal of Applied Phycology

, Volume 31, Issue 5, pp 3295–3301 | Cite as

Screening of polymorphic microsatellites and their application for Saccharina angustata and Saccharina longissima population genetic analysis

  • Jie Zhang
  • Xiuliang Wang
  • Jianting YaoEmail author
  • Norishige Yotsukura
  • Delin DuanEmail author
Article

Abstract

Saccharina angustata and S. longissima are ecologically and economically important seaweeds. So far, no microsatellite marker was available to S. angustata and S. longissima due to a lack of genomic data. Here, we developed polymorphic simple sequence repeats (SSRs) in S. longissima and S. angustata and applied these markers for further population genetic analysis. Cross-amplification tests showed that 11 SSR loci exhibited high amplification rate in S. angustata and S. longissima. Polymorphic information content values (PIC) of 11 loci showed 10 loci (PIC = 0.552–0.908), except for SJ31 (PIC = 0.482), have high polymorphism (PIC > 0.5). Polymorphism tests indicated that 10 loci have high polymorphism in three varieties of S. japonica and two related species. Genetic diversity analysis confirmed the validation of these markers in accessing the genetic diversity level of these kelps. STRUCTURE and NJ tree results indicated these 10 microsatellites are effective in evaluating the genetic relationship among different kelp populations. As results, these 10 polymorphic microsatellite markers are valid to Saccharina genetic analysis.

Keywords

Saccharina angustata Saccharina longissima Phaeophyceae Simple sequence repeats Cross amplification 

Notes

Acknowledgements

This study was supported by the Marine Scientific and Technological Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) ( 2018SDKJ0502-1), National Natural Science Foundation of China (31772848 and 31272660), and the Shandong Key Sci-Technology Research Project (2016ZDJS06B2).

Supplementary material

10811_2019_1798_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 56 kb)

References

  1. Akita S, Koiwai K, Hanyuda T, Kato S, Nozaki R, Uchino T, Sakamoto T, Kondo H, Hirono I, Fujita D (2018) Development of 11 Ecklonia radicosa (Phaeophyceae, Laminariales) SSRs markers using next-generation sequencing and intra-genus amplification analysis. J Appl Phycol 30:2111–2115Google Scholar
  2. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  3. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  4. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  5. Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  6. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  7. Hwang EK, Ha DS, Park CS (2018) The influences of temperature and irradiance on thallus length of Saccharina japonica (Phaeophyta) during the early stages of cultivation. J Appl Phycol 30:2875–2882CrossRefGoogle Scholar
  8. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  9. Jang JW, Gweon SH (1970) Studies on Laminaria cultivation. Report of the National Fisheries Research and Development Agency. Vol. 5. National Institute of Fisheries Science, Busan, pp. 63–74Google Scholar
  10. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334CrossRefGoogle Scholar
  11. Kawashima S (2012) Morphology and taxonomy of the laminariaceous algae in cold water area of Japan (in Japanese). Oya Nisan Publisher, Tokyo, pp 159–206Google Scholar
  12. Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512CrossRefGoogle Scholar
  13. Li XJ, Cong YZ, Yang GP, Shi YY, Qu SC, Li ZL, Wang GW, Zhang ZZ, Luo SJ, Dai HL, Xie JZ, Jiang GL, Liu JL, Wang TY (2007) Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica. J Appl Phycol 19:139–151CrossRefGoogle Scholar
  14. Li XJ, Liu JL, Cong YZ, Qu SC, Zhang ZZ, Dai HL, Luo SJ, Han XB, Huang SS, Wang QY, Liang GJ, Sun J, Jin Y, Wang D, Yang GP (2008) Breeding and trial cultivation of Dongfang No. 3, a hybrid of Laminaria gametophyte clones with a more than intraspecific but less than interspecific relationship. Aquaculture 280:76–80CrossRefGoogle Scholar
  15. Li QY, Zhang J, Yao JT, Wang XL, Duan DL (2016) Development of Saccharina japonica genomic SSR markers using next-generation sequencing. J Appl Phycol 28:1387–1390CrossRefGoogle Scholar
  16. Lischer HEL, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299CrossRefGoogle Scholar
  17. Liu FL, Wang XL, Yao JT, Fu WD, Duan DL (2010) Development of expressed sequence tag-derived microsatellite markers for Saccharina (Laminaria) japonica. J Appl Phycol 22:109–111CrossRefGoogle Scholar
  18. Martinez EA, Cardenas L, Figueroa C, Vidal RU, Billot C (2005) Microsatellites of Laminaria digitata tested in Lessonia nigrescens: evaluation and improvement of cross amplification between kelps of two different families. J Appl Phycol 17:245–253CrossRefGoogle Scholar
  19. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  20. Peng J, Zhang LN, Li XJ, Cui CJ, Wu RN, Tian PP, Li Y, Liu YL (2016) Development of genic SSR markers from an assembled Saccharina japonica genome. J Appl Phycol 28:2479–2484CrossRefGoogle Scholar
  21. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  22. Raymond M, Rousset F (1995) GENEPOP (version-1.2) – population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  23. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  24. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  25. Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752CrossRefGoogle Scholar
  26. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  27. Voisin M, Engel CR, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci U S A 102:5432–5437CrossRefGoogle Scholar
  28. Yeh FC, Yang RC, Boyle T (1999) POPGENE (version 1.31): Microsoft window-bases freeware for population genetic analysis. University of Alberta and the Centre for International Forestry ResearchGoogle Scholar
  29. Yotsukura N, Kawashima S, Kawai T, Abe T, Druehl LD (2008) A systematic re-examination of four Laminaria species: L. japonica, L. religiosa, L. ochotensis and L. diabolica. J Jpn Bot 83:165–176Google Scholar
  30. Yotsukura N, Nagai K, Kimura H, Morimoto K (2010a) Seasonal changes in proteomic profiles of Japanese kelp: Saccharina japonica (Laminariales, Phaeophyceae). J Appl Phycol 22:443–451CrossRefGoogle Scholar
  31. Yotsukura N, Shimizu T, Katayama T, Druehl LD (2010b) Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J Appl Phycol 22:243–251CrossRefGoogle Scholar
  32. Yotsukura N, Kawai T, Kawashima S, Ebata H, Ichimura T (2010c) Nucleotide sequence diversity of the 5s rDNA spacer in the simple blade kelp genera Laminaria, Cymathaere and Kjellmaniella (Laminariales, Phaeophyceae) from northern Japan. Phycol Res 54:269–279CrossRefGoogle Scholar
  33. Yotsukura N, Maeda T, Abe T, Nakaoka M, Kawai T (2016) Genetic differences among varieties of Saccharina japonica in northern Japan as determined by AFLP and SSR analyses. J Appl Phycol 28:3043–3055CrossRefGoogle Scholar
  34. Zhang QS, Tang XX, Cong YZ, Qu SC, Luo SJ, Yang GP (2007) Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J Appl Phycol 19:303–311CrossRefGoogle Scholar
  35. Zhang LN, Peng J, Li XJ, Liu YL, Cui CJ, Wu H, Wu RN, Tian PP, Li Y (2014) Development of 27 trinucleotide microsatellite markers for Saccharina japonica using next generation sequencing technology. Conserv Genet Resour 6:341–344CrossRefGoogle Scholar
  36. Zhang J, Yao JT, Sun ZM, Fu G, Galanin DA, Nagasato C, Motomura T, Hu ZM, Duan DL (2015) Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 15:237CrossRefGoogle Scholar
  37. Zhang J, Wang XL, Yao JT, Li QY, Liu FL, Yotsukura N, Krupnova TN, Duan DL (2017) Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China. Sci Rep 7:42158CrossRefGoogle Scholar
  38. Zhang J, Liu T, Rui FP (2018) Development of EST-SSR markers derived from transcriptome of Saccharina japonica and their application in genetic diversity analysis. J Appl Phycol 30:2101–2109CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  4. 4.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan

Personalised recommendations