Advertisement

Journal of Applied Phycology

, Volume 31, Issue 5, pp 3265–3273 | Cite as

Prebiotic effect of Ulva rigida meal on the intestinal integrity and serum cholesterol and triglyceride content in broilers

  • Betsabé Cañedo-Castro
  • Alejandra Piñón-Gimate
  • Silvia Carrillo
  • David Ramos
  • Margarita Casas-ValdezEmail author
Article

Abstract

Marine algae contain large amounts of bioactive compounds and dietary fiber; thus, when used as feed for poultry, they could be an alternative to improve intestinal integrity and reduce lipid serum concentrations. Few studies have assessed the prebiotic properties of this marine resource. The objective of this study was to evaluate the prebiotic effects of different concentrations of the green alga Ulva rigida as feed additive to enhance the morphology of intestinal villi and reduce total cholesterol and triglyceride levels in chickens. One hundred and forty-one-day-old Arbor Acres broilers were randomized to one of four treatments: 0, 2, 4, and 6% Ulva meal, respectively, including seven replicates of five broilers each, in a completely randomized design. The assay was run for 6 weeks. Body weight gain and carcass percentage were not affected by the treatment, but feed intake, feed conversion ratio, and mortality showed significant differences (p < 0.05). Width, height, and contour length of intestinal villi were higher (p < 0.05) in all U. rigida meal treatments compared to the control group. The highest (p < 0.05) intestinal villus height and contour length were recorded with 2% Ulva. Serum total cholesterol and triglyceride levels were significantly lower in Ulva treatments vs. control (p < 0.05). The addition of U. rigida to broilers meal improved the growth of intestinal villi and reduced serum total cholesterol and triglyceride levels, thus confirming that it could be considered as a prebiotic that can enhance the broiler health.

Keywords

Broilers Cholesterol Intestinal integrity Prebiotic effects Triglycerides Chlorophyta Ulva rigida 

Notes

Acknowledgments

The authors are grateful to Efrain Flores Montaño for his help in field sampling, and to Diego Armando Falcón Vidal for his collaboration during the experiment. Alma Ribera Camacho assisted in the histological analysis; María Elena Sánchez and Diana Fischer provided editorial services. Thanks also to the person in charge of the Poultry Area of the Posta Zootécnica at the Universidad Autónoma de Baja California Sur for facilitating the conduct of the experiment. Casas-Valdez and Piñón-Gimate authors thank Estímulo al Desempeño de la Investigación (EDI), Comisión de Fomento a las Actividades Académicas (COFAA), and Cañedo-Castro scholarship granted by CONACYT and Beca al Estímulo Institucional de Formación de Investigadores (BEIFI), Instituto Politécnico Nacional (IPN).

Funding information

This study was funded by the project Instituto Politécnico Nacional-SIP20161094.

Compliance with ethical standards

The experiment was run in compliance with the Mexican standard NOM-069-200-1999. Also, the experimental procedures were performed in accordance with the Guidelines and Rules for Animal Experimentation and the Animal Ethics Committee, Universidad Autonoma de Baja California Sur, Mexico.

References

  1. Abudabos AM, Okab AB, Aljumaah RS, Samara EM, Abdoun KA, Al-Haidary AA (2013) Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital J Anim Sci 12:177–181Google Scholar
  2. Águila-Ramírez R, Casas-Valdez M, Hernández-Guerrero CJ, Marín-Alvarez A (2005) Biomasa de Ulva spp. (Chlorophyta) en tres localidades del Malecón de La Paz, Baja California Sur, México. Rev Biol Mar Ocean 40:55–61Google Scholar
  3. Aguilera-Morales M, Casas-Valdez M, Carrillo-Domínguez S, González-Acosta B, Pérez-Gil F (2005) Chemical composition and microbiological assays of marine algae Enteromorpha spp., as a potential food source. J Compos Anal 18:79–88CrossRefGoogle Scholar
  4. AOAC (2000) Official methods of analysis. AOAC International, Washington, D.C.Google Scholar
  5. Arce-Menocal J, Ávila-González E, López C, García EA, García GF (2005) Efecto de paredes celulares (Saccharomyces cerevisiae) en el alimento de pollo de engorda sobre los parámetros productivos. Téc Pecu Méx 43:155–162Google Scholar
  6. Arce-Menocal J, Ávila-González E, López C (2008) Comportamiento productivo y cambios morfológicos en vellosidades intestinales del pollo en engorda a 21 días de edad con el uso de paredes celulares de Saccharomyces cerevisiae. Vet Mex 39:223–228Google Scholar
  7. Awad WA, Ghareeb K, Abdel-Raheem S, Böhm J (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88:49–56CrossRefPubMedGoogle Scholar
  8. Bradbury EJ, Wilkinson SJ, Cronin GM, Walk CL, Cowieson AJ (2012) The effect of marine calcium source on broiler leg integrity. In: Proc 23rd Annual Australian Poultry Science Symposium, Sydney NSW, Australia 19-22 February pp 85–88Google Scholar
  9. Buclaw M (2016) The use of inulin in poultry feeding: a review. J Anim Physiol Anim Nutr 100:1015–1022CrossRefGoogle Scholar
  10. Cabrita ARJ, Maia MRG, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJM (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28:3135–3150CrossRefGoogle Scholar
  11. Carrillo S, Casas-Valdez M, Ramos F, Pérez-Gil F, Sánchez-Rodríguez I (2002) Algas Marinas de Baja California Sur, México: Valor nutricional. Arch Latinoam Nutr 52:400–405Google Scholar
  12. Carrillo S, Bahena A, Casas-Valdez M, Carranco M, Calvo C, Ávila E, Pérez-Gil F (2012) The alga Sargassum spp. as alternative to reduce egg cholesterol content. Cuban J Agri Sci 46:181–186Google Scholar
  13. Cervantes-Duarte R, Aguirre-Bahena F, Reyes-Salinas A, Valdez-Holguín JE (2001) Caracterización hidrológica de una laguna costera de Baja California Sur, México. Oceánides 16:93–105Google Scholar
  14. Chávez S, García-Martínez J, Delgado-Ramos L, Pérez-Ortín JE (2016) The importance of controlling mRNA turnover during cell proliferation. Curr Genet 62:701–710CrossRefPubMedGoogle Scholar
  15. Chávez-Sánchez T, Piñón-Gimate A, Serviere-Zaragoza E, Sánchez-González A, Hernández-Carmona G, Casas-Valdez M (2017) Recruitment in Ulva blooms in relation to temperature, salinity and nutrients in a subtropical bay of the Gulf of California. Bot Mar 60:257–270CrossRefGoogle Scholar
  16. Chávez-Sánchez T, Piñón-Gimate A, Melton JT III, López-Bautista JM, Casas-Valdez M (2018) Ulva blooms in the southwestern gulf of California: reproduction and biomas. Estuar Coast Shelf Sci 200:202–2011CrossRefGoogle Scholar
  17. Cortes-Cuevas A, Ávila GE, Casaubon HT, Carrillo DS (2000) El efecto del Bacillus toyoi sobre el comportamiento productivo en pollos de engorda. Vet Mex 31:301–308Google Scholar
  18. Cruz-Ayala MB, Núñez-López RA, López GE (2001) Seaweeds in the southern gulf of California. Bot Mar 44:187–197CrossRefGoogle Scholar
  19. Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Guajardo-Barbosa C (2000) Uso de la harina de kelp (Macrocystis pyrifera) en alimentos para camarón. In: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, pp 227–266Google Scholar
  20. Cuervo M, Gómez C, Romero H (2002) Efecto de la utilización de un suplemento nutricional hidratado en pollos de engorde recién nacidos. Rev Colombiana Cien Pecuarias 15:319–329Google Scholar
  21. El-Deek AA, Al-Harthi MA, Abdalla AA, Elbanoby MM (2011) The use of brown algae meal in finisher broiler diets. Egypt Poult Sci J 31:767–781Google Scholar
  22. Evans FD, Critchely AT (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899CrossRefGoogle Scholar
  23. Ferrini G, Manzanilla EG, Menoyo D, Esteve-Garcia E, Baucells MD, Barroeta AC (2010) Effects of dietary n-3 fatty acids in fat metabolism and thyroid hormone levels when compared to dietary saturated fatty acids in chickens. Livestock Sci 131:287–291CrossRefGoogle Scholar
  24. Foster GG, Hodgson AN (1998) Consumation and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca:Vegigastropoda: Turbinidae). Aquaculture 167:211–227CrossRefGoogle Scholar
  25. Frikha F, Kammoun M, Hammami N, Mchirgui RA, Belbahri L, Gargouri Y, Miled N, Ben-Rebah F (2011) Chemical composition and some biological activities of marine algae collected in Tunisia. Cienc Mar 37:113–124CrossRefGoogle Scholar
  26. Gopal GS, Pal R (2011) Biochemical composition and lipid characterization of marine green alga Ulva rigida- a nutriotional approach. J Algal Biomass Utln 2:10–13Google Scholar
  27. Hassan S, El-Twab SA, Hetta M, Mahmoud B (2011) Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J Biol Sci 18:333–340CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hu X, Wang T, Li W, Jin F, Wang L (2013) Effects of NS Lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet. Lipids Health Dis 12:67CrossRefPubMedPubMedCentralGoogle Scholar
  29. Irkin LC, Erdugan H (2014) Chemical composition of Ulva rigida C. Agardh from the Canakkae Strait (Dardanelles), Turkey. J Black Sea/Mediterr Environ 20:114–121Google Scholar
  30. Itzá-Ortiz MF, López-Coello C, Ávila-González E, Gómez-Rosales S, Arce-Menocal J, Velásquez-Madrazo PA (2008) Efecto de la fuente energética y el nivel de energía sobre la longitud de las vellosidades intestinales, la respuesta inmune y el rendimiento productivo en los pollos de engorda. Vet Mex 39:357–376Google Scholar
  31. James O, Godwin E, Otini I (2013) Ulvaria chamae (Annonaceae) plant extract neutralizes some biological effects of Naja nigricollis snake venom in rats. Br J Pharmacol Toxicol 4:41–50CrossRefGoogle Scholar
  32. Jaramillo ÁH (2012) Evaluación de la mezcla de un ácido orgánico y un prebiótico en los parámetros productivos y alométricos de pollos de engorde con alimentación controlada. Rev Colombiana Cienc Anim 5:52–66Google Scholar
  33. Koth TS, Im JT, Park IK, Lee HJ, Choi DY, Choi CJ, Lee HG, Choi YJ (2005) Effect of dietary brown seaweed levels on the protein and energy metabolism in broiler chicks activated acute phase response. J Anim Sci Tech (Kor) 47:379–390CrossRefGoogle Scholar
  34. Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B (2014) Immunology, health, and disease: feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci 93:2991–3001CrossRefPubMedGoogle Scholar
  35. Lee W, Koh E, Woh J, Kim M, Park J, Lee K (2005) Obesity: the role of hypothalamic AMP-activated protein kinase in body weight regulation. Int J Biochem Cell Biol 37:2254–2259CrossRefPubMedGoogle Scholar
  36. Li Q, Luo J, Wang C, Tai W, Wang H, Zhang X, Liu K, Jia Y, Lyv X, Wang L, He H (2018) Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. J Appl Phycol 30:2017–2027CrossRefGoogle Scholar
  37. Makkar HPS, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P (2016) Seaweeds for livestock diets: a review. Anim Feed Sci Technol 212:1–17CrossRefGoogle Scholar
  38. Marinho-Sorino E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406CrossRefGoogle Scholar
  39. Markovic R, Šefer D, Krstic M, Petrujkic B (2009) Effect of different growth promoters on broiler performance and gut morphology. Arch Med Vet 41:163–169Google Scholar
  40. NCR (1994) Nutrient requirements of poultry, 9th edn. National Academic Press, Washingthon, DCGoogle Scholar
  41. Osorio JH, Flórez JD, Pérez JE (2012) Evaluación de los métodos directo, precipitado y Friedewald para la cuantificación de colesterol LDL y HDL en pollos de engorde. Rev Med Vet 24:85–90CrossRefGoogle Scholar
  42. Qadri SSN, Biswas A, Mandal AB, Kumawat M, Saxena R, Nasir AM (2019) Production performance, immune response and carcass traits of broiler chickens fed diet incorporated with Kappaphycus alvarezii. J Appl Phycol 31:753–760CrossRefGoogle Scholar
  43. Raghavendran HRB, Sathivel A, Devaki T (2005) Effect of Sargassum polycystum (Phaeophyceae)-sulphated polysaccharide extract against acetaminophen-induced hyperlipidemia during toxic hepatitis in experimental rats. Molec Cell Biochem 276:89–96CrossRefPubMedGoogle Scholar
  44. Rebolé A, Ortiz LT, Rodríguez M, Alzueta C, Treviño J, Velasco S (2010) Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat-and barley-based diet. Poult Sci 89:276–286CrossRefPubMedGoogle Scholar
  45. Rehman H, Böhm J, Zentek J (2007) Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract of broilers. J Anim Physiol Anim Nutr 92:471–480CrossRefGoogle Scholar
  46. Robic A, Bertrand D, Sassi JF, Lerat Y, Lahaye M (2009) Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J Appl Phycol 21:451–456CrossRefGoogle Scholar
  47. SAGARPA (2016) 4to Informe de Labores 2015-2016. Secretaría de Agricultura, Ganadería, Pesca y Desarrollo Alimentario, México 154 ppGoogle Scholar
  48. Sall J, Lee C, Lehman A (2007) JMP® star statistic: a guide to statistic and data analysis using JMP®, 4th edn. SAS Institute, CaryGoogle Scholar
  49. Sun J, Song HL, Zhao J, Xiao Y, Qi R, Lin YT (2010) Effects of different dietary levels of Enteromorpha prolifera on nutrient availability and digestive enzyme activities of broiler chickens. Chin J Anim Nutr 22:1658–1664Google Scholar
  50. Taboada C, Millán R, Míguez I (2010) Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 90:445–449CrossRefPubMedGoogle Scholar
  51. Tietz N (2006) Clinical guide to laboratory test. In: Tietz N (ed) A Guide, 4th edn. WB Saunders Co, PhiladelphiaGoogle Scholar
  52. Velasco S, Rodríguez ML, Alzuela MC, Rebolé A, Ortiz LT (2010) Los prebióticos tipo inulina en alimentación aviar. I: Características y efectos a nivel intestinal. Rev Complutense Cien Vet 4:87–104Google Scholar
  53. Ventura MR, Castañón JIR, McNab JM (1994) Nutritional value of seaweed (Ulva rigida) for poultry. Anim Feed Sci Technol 49:87–92CrossRefGoogle Scholar
  54. Wang SB, Shi XP, Zhou CF, Lin YT (2013) Entermorpha prolifera: effects on performance, carcass quality and small intestinal digestive enzyme activities of broilers. Chin J Anim Nutr 25:1332–1337Google Scholar
  55. Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ (2003) Effects of dietary fructo oligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 82:1030–1036CrossRefPubMedGoogle Scholar
  56. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalCentro Interdisciplinario de Ciencias MarinasLa PazMexico
  2. 2.Departamento de Nutrición AnimalInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”CDMXMexico
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoCDMXMexico

Personalised recommendations