“Niágara Rosada” table grape cultivated with seaweed extracts: physiological, nutritional, and yielding behavior

  • Raoni Pereira de CarvalhoEmail author
  • Moacir Pasqual
  • Helbert Rezende de Oliveira Silveira
  • Paulo César de Melo
  • Diêgo Faustolo Alves Bispo
  • Ranieri Reis Laredo
  • Lilian de Aguiar Saldanha Lima


Adverse environmental factors, such as heat and drought stress, may impact negatively on the development of grapevines in Brazil, especially for the most important table grape variety, “Niágara Rosada.” Bioactivators from marine algae offer grower products to help overcome such environmental problems. Seaweed extracts containing organic compounds and bioactive molecules impact beneficial effects to plant physiological, nutritional, and yielding behavior. These effects can be influenced by the seaweed extract used, the methodology of production of the seaweed extracts, and the plant species. A study was carried out on a commercial field, over two seasons, aiming to evaluate the effect of foliar applications of seaweed extracts from Ascophyllum nodosum, Hypnea musciformis, Lithothamnium sp., and Sargassum vulgare at 0.6% on “Niágara Rosada” physiology, nutrition, and yield. For most evaluations, treatments with seaweed extract improved net photosynthetic rate, stomatal conductance, water use efficiency, and carboxylation efficiency. Leaf content of K, Mg, B, Cu, and Zn was positively affected by foliar application with the seaweed extracts. Yield per plant was affected by foliar application with seaweeds, with higher values in plants treated with seaweed extract from Ascophyllum nodosum followed by Lithothamnium sp.


Biostimulants Vitis spp. Leaf gas exchange Mineral nutrition Sustainable yield Phaeophyceae Rhodophyta 



The authors thank the Coordination of Improvement of Higher Education Personnel (CAPES) for scholarships and other financial resources and Ceres Tecnologia Agrícola and Acadian Seaplants for the supply of seaweed extracts for research achievement. The authors deeply appreciate the review of this article by Dr. Holly Little (Acadian Seaplants Limited. NS).


  1. Ali N, Farrell A, Ramsubhag A, Jayaraman J (2016) The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J Appl Phycol 28:1353–1362CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  3. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  4. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48CrossRefGoogle Scholar
  5. Bota J, Tomás M, Flexas J, Medrano H, Escalona JM (2016) Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric Water Manag 164:91–99CrossRefGoogle Scholar
  6. Brasil (2002) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 001, de 01 de fevereiro de 2002. Estabelece o Regulamento Técnico de identidade e de qualidade para a classificação da uva rústica, na forma dessa Instrução Normativa e dos seus Anexos I a III. Diário Oficial [da] União, Brasília, DF, 4 fev, 2002 e, seção 1, 2p. Accessed 12 Dec 2015
  7. Bruna ED, Back AJ (2015) Comportamento da cultivar Niágara Rosada enxertada sobre diferentes porta-enxertos no sul de Santa Catarina, Brasil. Rev Bras Frutic 34:924–933CrossRefGoogle Scholar
  8. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  9. Carneiro JG, Rodrigues JAG, Teles FB, Cavalcante ABD, Benevides NMB (2014) Analysis of some chemical nutrients in four Brazilian tropical seaweeds. Acta Sci 36:137–145Google Scholar
  10. Carvalho RP, Moreira RA, Cruz MCM, Fernandes DR, Oliveira AF (2014) Organomineral fertilization on the chemical characteristics of quartzarenic neosol cultivated with olive tree. Sci Hortic 176:120–126CrossRefGoogle Scholar
  11. Castro J, Vera J, González A, Moenne A (2012) Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism, and cell cycle in tobacco plants (var. burley). J Plant Growth Regul 31:173–185CrossRefGoogle Scholar
  12. Chouliaras V, Tasiola M, Chatzissavvidis C, Therios I, Tsabolatidou E (2009) The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J Sci Food Agric 89:984–988CrossRefGoogle Scholar
  13. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393CrossRefGoogle Scholar
  14. Deus BCS, Figueiredo FAMMA, Almeida LVB, Ferraz TM, Martins AM, Rodrigues WP, Viana LH, Esteves BS, Campostrini E (2016) Photosynthetic capacity of ‘Niagara Rosada’ grapes grown under transparent plastic covering. Cienc Rural 46:950–956CrossRefGoogle Scholar
  15. Elansary HO, Wozniak KS, King IW (2016) Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol Biochem 105:310–320CrossRefGoogle Scholar
  16. El-Said G, El-Sikaily A (2013) Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ Monit Assess 185:6089–6099CrossRefGoogle Scholar
  17. Elzinga EJ, Sparks DL (2007) Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J Colloid Interface Sci 308:53–70CrossRefGoogle Scholar
  18. Embrapa (2013) National Soil Research Center. Brazilian System of Soil Classification. 3. ed, Brasília, DF : EMBRAPA, 353 p. ilGoogle Scholar
  19. Fráguas JC, Czermainski ABC (2001) Avaliação de produtos para a nutrição da videira via foliar. Rev Bras Ciênc Solo 25:1007–10015CrossRefGoogle Scholar
  20. González A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448CrossRefGoogle Scholar
  21. González A, Moenne F, Gómez M, Saéz CA, Contreras RA, Moenne A (2014) Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees. Front Plant Sci 5:1–13Google Scholar
  22. Hernández-Herrera RM, Ruvalcaba FS, López MAR, Norrie J, Carmona GH (2014) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26:619–628CrossRefGoogle Scholar
  23. IBGE (Brazilian Institute of Geography and Statistics) (2016) Systematic survey of agricultural production, Rio de Janeiro 29:1–79[mensal]/Fasciculo/lspa_201603.pdf. Accessed 14 June 2016
  24. INMET – Agroclimatological Bulletin (2014, 2015 e 2016) Accessed 15 May 2016
  25. Jacobucci GB, Leite FPP (2014) The role of epiphytic algae and different species of Sargassum in the distribution and feeding of herbivorous amphipods. Lat Am J Aquat Res 42:353–363CrossRefGoogle Scholar
  26. Kalaivanan C, Venkatesalu V (2012) Utilization of seaweed Sargassum myriocystum extracts as a stimulant on seedlings of Vigna mungo (L.) Hepper. Span J Agric Res 10:466–470CrossRefGoogle Scholar
  27. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399CrossRefGoogle Scholar
  28. Khan AS, Ahmad B, Jaskani MJ, Ahmad R, Malik AU (2012) Foliar application of mixture of amino acids and seaweed (Ascophyllum nodosum) extract improve growth and physicochemical properties of grapes. Int J Agric Biol 14:383–388Google Scholar
  29. Kok D, Bal E, Celik S, Ozer C, Karauz A (2010) The influences of different seaweed doses on table quality characteristics of cv. Trakya Ilkeren (Vitis vinifera L.). Bulg J Agric Sci 16:429–435Google Scholar
  30. Kumar S, Sahoo D, Levine I (2015) Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Res 9:117–125CrossRefGoogle Scholar
  31. Malavolta E, Vitti GC, Oliveira AS (1997) Avaliação do estado nutricional das plantas: princípios e aplicações, 2nd edn. POTAFOS, Piracicaba, 319 pGoogle Scholar
  32. Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161Google Scholar
  33. Martins CDL, Ramlov F, Carneiro NPN, Gestinari LM, Santos BF, Bento LM, Lhullier C, Gouvea L, Bastos E, Horta PA, Soares AR (2013) Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J Appl Phycol 25:1179–1187CrossRefGoogle Scholar
  34. Melo PC, Furtini Neto AE (2003) Avaliação do Lithothamnium como corretivo da acidez do solo e fonte de nutrientes para o feijoeiro. Ciênc Agrotec 27:508–519CrossRefGoogle Scholar
  35. Merewitz EB, Du H, Yu W, Liu Y, Gianfagna T, Huang B (2012) Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J Exp Bot 63:1315–1328CrossRefGoogle Scholar
  36. Mikiciuk M, Dobromilska R (2014) Assessment of yield and physiological indices of small-sized tomato cv. Bianka F1 under the influence of biostimulators of marine algae origin. Acta Sci Pol-Horto 13:31Google Scholar
  37. Moreira RA, Ramos JD, Araújo NA, Marques VB (2012) Produtividade e teores de nutrientes em cladódios de pitaia vermelha utilizando-se adubação orgânica e granulado bioclástico. Rev Bras Ciên Agrár 7:714–719Google Scholar
  38. Moutinho-Pereira J, Gonçalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48:159–165Google Scholar
  39. Moutinho-Pereira J, Bacelar EA, Gonçalves B, Ferreira HF, Coutinho JF, Correia CM (2010) Effects of open-top chambers on physiological and yield attributes of field grown grapevines. Acta Physiol Plant 32:395–403CrossRefGoogle Scholar
  40. Mugnai S, Azzarello E, Pandolfi C, Salamagne S, Briand X, Mancuso S (2008) Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J Appl Phycol 20:177–182CrossRefGoogle Scholar
  41. Nair P, Kandasamy P, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B, (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 13(1):643Google Scholar
  42. Neily W, Shishkov L, Nickerson S, Titus D, Norrie J (2010) Commercial extract from the brown seaweed Ascophyllum nodosum (Acadian (R)) improves early establishment and helps resist water stress in vegetable and flower seedlings. HortScience 45:105-106Google Scholar
  43. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmulling T, Tran LP (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183CrossRefGoogle Scholar
  44. Norrie J, Keathley JP (2006) Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Acta Hortic 727:243–248CrossRefGoogle Scholar
  45. Pise NM, Sabale AB (2010) Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum. J Phytol 2:50–56Google Scholar
  46. Rozane DE, Brunetto G, Melo GWB, Natale W, Parent LE, Parent SE, Santos EMH (2015) CND-Uva. Programa de computador: Instituto Nacional da Propriedade Industrial - INPI: BR0000000000000. Universidade Estadual Paulista “Júlio de Mesquita Filho”; Universidade Federal de Santa Maria; Empresa Brasileira de Pesquisa Agropecuária; Université LavalGoogle Scholar
  47. Sabir A (2015) Improvement of the pollen quality and germination levels in grapes (Vitis vinifera l.) by leaf pulverizations with nanosize calcite and seaweed extract (Ascophyllium nodosum). J Anim Plant Sci 25:1599–1605Google Scholar
  48. Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield. Berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8CrossRefGoogle Scholar
  49. Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez Á, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109CrossRefGoogle Scholar
  50. Selvam GG, Sivakumar K (2014) Influence of seaweed extract as an organic fertilizer on the growth and yield of Arachis hypogea L. and their elemental composition using SEM–energy dispersive spectroscopic analysis. Asian Pac J Reprod 3:18–22CrossRefGoogle Scholar
  51. Soil Chemical and Fertility Commission – RS/SC (2004) Brazilian Society of Soil Science. Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina, 10th edn. Porto Alegre, 400 pGoogle Scholar
  52. Spann M, Little H (2011) Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees. HortScience 46:577-582Google Scholar
  53. Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2009) Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J Hortic Sci Biotechnol Special Issue:131–137Google Scholar
  54. Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2010) A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic 125:263–269CrossRefGoogle Scholar
  55. Taskos DG, Koundouras S, Stamatiadis S, Zioziou E, Nikolaou N, Karakioulakis K, Theodorou N (2015) Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity. Precis Agric 16:77–98CrossRefGoogle Scholar
  56. Tecchio MA, Pires EJP, Terra MM, Grassi Filho H, Corrêa JC, Ide Vieira CRY (2006) Correlação entre a produtividade e os resultados de análise foliar e de solo em vinhedos de Niágara Rosada. Ciênc Agrotec 30:1056–1064CrossRefGoogle Scholar
  57. Teixeira LAJ, Tecchio MA, Moura MF, Terra MM, Pires EJP (2015) Normas Dris e níveis críticos de nutrientes para videira ‘Niágara Rosada’ cultivada na região de Jundiaí-SP. Rev Bras Frutic 37:247–255CrossRefGoogle Scholar
  58. Treichel M, Kist BB, Santos CD, Carvalho CD, Beling RR (2016) Anuário brasileiro da fruticultura. Editora Gazeta Santa Cruz, Santa Cruz do Sul, p 88Google Scholar
  59. Turan M, Köse C (2004) Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand Sect B Soil Plant Sci 54:213–220Google Scholar
  60. Vijayanand N, Sivasangari Ramya S, Rathinavel S (2014) Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pac J Reprod 3:150–155CrossRefGoogle Scholar
  61. Vinoth S, Gurusaravanan P, Jayabalan N (2012) Effect of seaweed extracts and plant growth regulators on high-frequency in vitro mass propagation of Lycopersicon esculentum L (tomato) through double cotyledonary nodal explant. J Appl Phycol 24:1329–1337CrossRefGoogle Scholar
  62. Wally OSD, Critchley AT, Hiltz D, Craigie JS, Han X, Zaharia LI, Abrams SR, Prithiviraj B (2013) Regulations of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J Plant Growth Regul 32:324–339CrossRefGoogle Scholar
  63. Xu C, Leskovar DI (2015) Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci Hortic 183:39–47CrossRefGoogle Scholar
  64. Xu N, Christodoulatos C, Braida W (2006) Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemos 64:1325–1333CrossRefGoogle Scholar
  65. Yokoya NS, Stirk WA, Van Staden J, Novák O, Turecková V, Pĕncík A, Strand M (2010) Endogenous cytokinins, auxins and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205CrossRefGoogle Scholar
  66. Zermeño-González A, Mendez-López G, Rodríguez-Garcia R, Cadena-Zapata M, Cárdenas-Palomo JO, Catalán-Valencia EA (2015) Biofertilización de vid en relación con fotosíntesis, rendimiento y calidad de frutos. Agrociencia 49:875–887Google Scholar
  67. Zhang X, Ervin EH (2004) Cytokinin containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinin and drought resistance. Crop Sci 44:1–10CrossRefGoogle Scholar
  68. Zhang X, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci 48:364–370CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Raoni Pereira de Carvalho
    • 1
    Email author return OK on get
  • Moacir Pasqual
    • 1
  • Helbert Rezende de Oliveira Silveira
    • 1
  • Paulo César de Melo
    • 1
  • Diêgo Faustolo Alves Bispo
    • 2
  • Ranieri Reis Laredo
    • 1
  • Lilian de Aguiar Saldanha Lima
    • 3
  1. 1.Agronomy DepartamentFederal University of LavrasLavrasBrazil
  2. 2.Soil Science DepartamentFederal University of LavrasLavrasBrazil
  3. 3.Acadian Seaplants, Market Development ScientistSão PauloBrazil

Personalised recommendations