Journal of Applied Phycology

, Volume 31, Issue 3, pp 2159–2173 | Cite as

Spatio-temporal variability of strandings of the southern bull kelp Durvillaea antarctica (Fucales, Phaeophyceae) on beaches along the coast of Chile—linked to local storms

  • Boris A. LópezEmail author
  • Erasmo C. Macaya
  • Ricardo Jeldres
  • Nelson Valdivia
  • César C. Bonta
  • Fadia Tala
  • Martin Thiel


Availability of floating seaweeds may depend on the seasonal cycles of benthic populations, but our ability to predict temporal patterns of stranded biomasses is still limited. Season-dependent, local storms favor detachment of seaweeds from the substratum, which can be reflected in the stranded biomasses on adjacent beaches after these events. Hence, we hypothesized that seaweed strandings are positively correlated with storm intensity. Using as a model the southern bull kelp Durvillaea antarctica (Chamisso) Hariot, a species frequently found in seaweed strandings in Chile, bimonthly surveys were carried out on three beaches: Pichicuy (32° S), Itata Norte (36° S), and Curiñanco (39° S) for 3 years (2014 to 2017). Stranded biomass, total length, and wet weight of specimens were quantified and related to local storms (using the Douglas sea scale). Stranded biomasses decreased in the spring months of each year, being higher in Pichicuy and Curiñanco than Itata Norte. Regression models showed a better fit with recent storms in Curiñanco compared to other beaches. An interannual decrease of beach-cast raft size was observed, showing smaller specimens in Itata Norte than those in Pichicuy and Curiñanco. Reduced habitat availability and the exploitation of natural beds in the central zone (34°–37° S) might explain the decrease of biomasses and sizes of stranded bull kelps. Also, oceanographic features at intermediate (i.e., local winds and currents) and large scales (i.e., El Niño) can help to explain the temporal variability, particularly in spring and summer. Our results suggest that harvesting of stranded bull kelps might be most favorable in summer and autumn.


Bull kelps Douglas sea scale Floating seaweeds Sandy beaches Strandings 



We wish to express our gratitude to Óscar Pino, Vieia Villalobos, and Ulyces Urtubia from Universidad Católica del Norte for their field assistance, as well as all the participants of the Universidad de Concepción (Algalab) and Universidad Austral de Chile (Lafkenchelab) who collaborated during field surveys in central and southern beaches, respectively. Also, Dr. Marcelo Rivadeneira is recognized for his suggestions about statistical analyses. Comments from one anonymous reviewer were very helpful in improving the original manuscript.


This study was financed by CONICYT/FONDECYT 1131082 to M.T. and F.T. and PhD fellowship Beca CONICYT-PCHA/DoctoradoNacional/2014-21140010 to BL. E.C.M. and N.V. were supported by FONDAP research grant 15150003 (IDEAL).

Supplementary material

10811_2018_1705_MOESM1_ESM.docx (636 kb)
ESM 1 (DOCX 635 kb)


  1. Adams GD, Flores D (2016) Influencia de El Niño Oscilación del Sur en la disponibilidad y abundancia de recursos hidrobiológicos de la pesca artesanal en Ica, Perú. Rev Biol Mar Oceanogr 51:265–272CrossRefGoogle Scholar
  2. Anderson DT (1994) Barnacles: structure, function, development and evolution. Chapman and Hall, LondonGoogle Scholar
  3. Araújo R, Serrão EA, Sousa-Pinto I, Aberg P (2011) Phenotypic differentiation at southern limit borders: the case study of two fucoid macroalgal species with different life-history traits. J Phycol 47:451–462CrossRefPubMedGoogle Scholar
  4. Araújo R, Serrão EA, Sousa-Pinto I, Arenas F, Monteiro CA, Toth G, Pavia H, Aberg P (2015) Trade-offs between life-history traits at range-edge and central locations. J Phycol 51:808–818CrossRefPubMedGoogle Scholar
  5. Aravena G, Broitman B, Stenseth NC (2014) Twelve years of change in coastal upwelling along the central-northern coast of Chile: spatially heterogeneous responses to climatic variability. PLoS One 9:e90276CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arenas F, Fernández C, Rico J, Fernández E, Haya D (1995) Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit.) Roberts. Sci Mar 59:1–8Google Scholar
  7. Atkinson LP, Valle-Levinson A, Figueroa D, Pol-Holz D, Gallardo VA, Schneider W, Blanco JL, Schmidt M (2002) Oceanographic observations in Chilean coastal waters between Valdivia and Concepción. J Geophys Res Oceans 107:181–193CrossRefGoogle Scholar
  8. Batista MB, Batista A, Franzan P, Simionatto P, Lima TC, Velez-Rubio GM, Scarabino F, Camacho O, Schmitz C, Martinez A, Ortega L, Fabiano G, Rothman MD, Liu G, Ojeda J, Mansilla A, Barreto LM, Assis J, Serrão EA, Santos R, Horta PA (2018) Kelps’ long-distance dispersal: role of ecological/oceanographic processes and implications to marine forest conservation. Diversity 10:11CrossRefGoogle Scholar
  9. Camus PA (2001) Biogeografía marina de Chile continental. Rev Chil Hist Nat 74:587–617CrossRefGoogle Scholar
  10. Camus P, Vásquez J, González E, Galáz L (1994) Fenología espacial de la diversidad comunitaria intermareal en el norte de Chile: patrones comunitarios de variación geográfica e impacto de los procesos de extinción-recolonización post El Niño 82/83. Medio Ambiente (Chile) 12:129–163Google Scholar
  11. Castilla JC, Bustamante RH (1989) Human exclusion from rocky intertidal of Las Cruces, Central Chile—effects on Durvillaea antarctica (Phaeophyta, Durvilleales). Mar Ecol Prog Ser 50:203–214CrossRefGoogle Scholar
  12. Castilla J, Camus P (1992) The Humboldt-El Niño scenario: coastal benthic resources and anthropogenic influences, with particular reference to the 1982/83 ENSO. S Afr J Mar Sci 12:703–712CrossRefGoogle Scholar
  13. Castilla JC, Campo MA, Bustamante RH (2007) Recovery of Durvillaea antarctica (Durvilleales) inside and outside Las Cruces Marine Reserve, Chile. Ecol Appl 17:1511–1522CrossRefPubMedGoogle Scholar
  14. Collantes G, Riveros R, Acevedo M (1997) Fenología reproductiva de Durvillaea antarctica (Phaeophyta, Durvillaeales) del intermareal de caleta Montemar, Chile central. Rev Biol Mar Oceanogr 32:111–116Google Scholar
  15. Collantes G, Merino A, Lagos V (2002) Fenología de la gametogénesis, madurez de conceptáculos, fertilidad y embriogénesis en Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvillaeales). Rev Biol Mar Oceanogr 37:83–112CrossRefGoogle Scholar
  16. Cowpertwait PSP, Metcalfe AV (2009) Introductory time series with R. Springer-Verlag, New YorkGoogle Scholar
  17. Craw D, Waters J (2018) Long distance kelp-rafting of rocks around southern New Zealand. N Z J Geol Geophys 61:428–443CrossRefGoogle Scholar
  18. Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34CrossRefGoogle Scholar
  19. Dempster T, Kingsford MJ (2004) Drifting objects as habitat for pelagic juvenile fish off New South Wales, Australia. Mar Freshwater Res 55:675–687CrossRefGoogle Scholar
  20. Deysher L, Norton TA (1981) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195CrossRefGoogle Scholar
  21. Duarte C, Jaramillo E, Contreras H (2008) Stranded algal wracks on a sandy beach of south Central Chile: feeding and habitat preferences of juveniles and adults of Orchestoidea tuberculata (Nicolet), (Amphipoda, Talitridae). Rev Chil Hist Nat 81:69–81CrossRefGoogle Scholar
  22. Duarte C, Jaramillo E, Contreras H, Acuña K, Navarro JM (2009) Importance of macroalgae subsidy on the abundance and population biology of the amphipod Orchestoidea tuberculata (Nicolet) in sandy beaches of south Central Chile. Rev Biol Mar Oceanogr 44:691–702CrossRefGoogle Scholar
  23. Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40CrossRefGoogle Scholar
  24. Duggins D, Eckman JE, Siddon CE, Klinger T (2001) Interactive roles of mesograzers and current flow in survival of kelps. Mar Ecol Prog Ser 223:143–155CrossRefGoogle Scholar
  25. Durán LR, Castilla JC, Oliva D (1987) Intensity of human predation on rocky shores at Las Cruces in Central Chile. Environ Conserv 14:143–149CrossRefGoogle Scholar
  26. Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci U S A 106:3249–3253CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fraser CI, Nikula R, Waters JM (2011) Oceanic rafting by a coastal community. Proc R Soc B 278:649–655CrossRefPubMedGoogle Scholar
  28. Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garden CJ, Smith AM (2011) The role of kelp in sediment transport: observations from southeast New Zealand. Mar Geol 281:35–42CrossRefGoogle Scholar
  30. Garden CJ, Craw D, Waters JM, Smith A (2011) Rafting rocks reveal marine biological dispersal: a case study using clasts from beach-cast macroalgal holdfasts. Estuar Coast Shelf Sci 95:388–394CrossRefGoogle Scholar
  31. Garden CJ, Currie K, Fraser CI, Waters JM (2014) Rafting dispersal constrained by an oceanographic boundary. Mar Ecol Prog Ser 501:297–302CrossRefGoogle Scholar
  32. Garden CJ, Smith AM (2015) Voyages of seaweeds: the role of macroalgae in sediment transport. Sediment Geol 318:1–9CrossRefGoogle Scholar
  33. Gelcich S, Edwards-Jones G, Kaiser MJ, Castilla JC (2006) Co-management policy can reduce resilience in traditionally managed marine ecosystems. Ecosystems 9:951–966CrossRefGoogle Scholar
  34. Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK (2012) Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol 27:47–56CrossRefPubMedGoogle Scholar
  35. Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M (2013) Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar 56:3–14CrossRefGoogle Scholar
  36. Graiff A, Pantoja JF, Tala F, Thiel M (2016) Epibiont load causes sinking of viable kelp rafts: seasonal variation in floating persistence of giant kelp Macrocystis pyrifera. Mar Biol 163:190–204CrossRefGoogle Scholar
  37. Hawes NA, Taylor DI, Schiel DR (2017) Transport of drifting fucoid algae: nearshore transport and potential for long distance dispersal. J Exp Mar Biol Ecol 490:34–41CrossRefGoogle Scholar
  38. Helmuth B, Veit RR, Holberton R (1994) Long distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp rafting. Mar Biol 120:421–426CrossRefGoogle Scholar
  39. Hinojosa I, Boltana S, Lancellotti D, Macaya E, Ugalde P, Valdivia N, Vásquez N, Newman WA, Thiel M (2006) Geographic distribution and description of four pelagic barnacles along the south east Pacific coast of Chile—a zoogeographical approximation. Rev Chil Hist Nat 79:13–27CrossRefGoogle Scholar
  40. Hinojosa IA, Pizarro M, Ramos M, Thiel M (2010) Spatial and temporal distribution of floating kelp in the channels and fjords of Southern Chile. Estuar Coast Shelf Sci 87:367–377CrossRefGoogle Scholar
  41. Hinojosa IA, Rivadeneira MM, Thiel M (2011) Temporal and spatial distribution of floating objects in coastal waters of Central-Southern Chile and Patagonian fjords. Cont Shelf Res 31:172–186CrossRefGoogle Scholar
  42. Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y (2001) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. I. Seasonal changes of plants in species composition, appearance, number of species and size. Phycol Res 49:215–229CrossRefGoogle Scholar
  43. Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y (2003) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. II: seasonal changes in plants showing maximum stipe length in drifting seaweed communities. Phycol Res 51:186–191CrossRefGoogle Scholar
  44. Hobday AJ (2000) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California bight. Mar Ecol Prog Ser 195:101–116CrossRefGoogle Scholar
  45. Hoffmann A, Santelices B (1997) Flora marina de Chile Central. Ediciones Universidad Católica de Chile, Santiago de Chile, ChileGoogle Scholar
  46. Hormazábal S, Shaffer G, Leth O (2004) Coastal transition zone off Chile. J Geophys Res Oceans 109:C01021. CrossRefGoogle Scholar
  47. Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology. Cambridge University Press, CambridgeGoogle Scholar
  48. Kingsford MJ (1992) Drift algae and small fish in coastal waters of northeastern New Zealand. Mar Ecol Prog Ser 80:41–55CrossRefGoogle Scholar
  49. Kirkman H, Kendrick GA (1997) Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9:311–326CrossRefGoogle Scholar
  50. Ladah LB, Zertuche-González JA, Hernández-Carmona G (1999) Giant kelp (Macrocystis pyrifera, Phaeophyceae) recruitment near its southern limit in Baja California after mass disappearance during ENSO 1997–1998. J Phycol 35:1106–1112CrossRefGoogle Scholar
  51. Lastra M, Rodil IF, Sánchez-Mata A, García-Gallego M, Mora J (2014) Fate and processing of macroalgal wrack subsidies in beaches of Deception Island, Antarctic Peninsula. J Sea Res 88:1–10CrossRefGoogle Scholar
  52. López BA, Macaya EC, Tala F, Tellier F, Thiel M (2017) The variable routes of rafting: stranding dynamics of floating bull kelp Durvillaea antarctica (Fucales, Phaeophyceae) on beaches in the SE Pacific. J Phycol 53:70–84CrossRefPubMedGoogle Scholar
  53. López BA, Macaya EC, Rivadeneira MM, Tala F, Tellier F, Thiel M (2018) Epibiont communities on stranded kelp rafts of Durvillaea antarctica (Fucales, Phaeophyceae)—do positive interactions facilitate range extensions? J Biogeogr 45:1833–1845CrossRefGoogle Scholar
  54. MacMillan MR, Quijón PA (2012) Wrack patches and their influence on upper-shore macrofaunal abundance in an Atlantic Canada sandy beach system. J Sea Res 72:28–37CrossRefGoogle Scholar
  55. Marsden ID (1991) Kelp sandhopper interactions on a sand beach in New Zealand. 1. Drift composition and distribution. J Exp Mar Biol Ecol 152:61–74CrossRefGoogle Scholar
  56. McLachlan A, Brown A C (2006) The ecology of sandy shores. Academic Press, Burlington, MA, USAGoogle Scholar
  57. Miranda L, Thiel M (2008) Active and passive migration in boring isopods Limnoria spp. (Crustacea, Peracarida) from kelp holdfasts. J Sea Res 60:176–183CrossRefGoogle Scholar
  58. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  59. Norton T (1976) Why is Sargassum muticum so invasive? Br Phycol J 11:197–198CrossRefGoogle Scholar
  60. Norton TA (1977) The growth and development of Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 26:41–53CrossRefGoogle Scholar
  61. Ohno M (1984) Observation on the floating seaweeds of near-shore waters of southern Japan. Hydrobiologia 116:408–412CrossRefGoogle Scholar
  62. Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–1507CrossRefGoogle Scholar
  63. Owens EH (1982) Sea conditions. In: Schwartz ML (ed) Beaches and coastal geology. Encyclopedia of Earth Sciences Series. Springer US, Boston, pp 722–804CrossRefGoogle Scholar
  64. Pfister CA, Betcher SP (2018) Climate drivers and animal host use determine kelp performance over decadal scales in the kelp Pleurophycus gardneri (Laminariales, Phaeophyceae). J Phycol 54:1–11CrossRefPubMedGoogle Scholar
  65. Piriz ML, Eyras MC, Rostagno CM (2003) Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. J Appl Phycol 15:67–74CrossRefGoogle Scholar
  66. Quintanilla-Ahumada D, Quijón PA, Navarro JM, Pulgar J, Duarte C (2018) Living on a trophic subsidy: algal quality drives an upper-shore herbivore’s consumption, preference and absorption but not growth rates. PLoS One 13:e0196121CrossRefPubMedPubMedCentralGoogle Scholar
  67. R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  68. Rech S, Macaya-Caquilpan V, Pantoja JF, Rivadeneira MM, Jofre Madariaga D, Thiel M (2014) Rivers as a source of marine litter—a study from the SE Pacific. Mar Pollut Bull 82:66–75CrossRefPubMedGoogle Scholar
  69. Reed DC, Rassweiler A, Carr MH, Cavanaugh KC, Malone DP, Siegel DA (2011) Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2108–2116CrossRefPubMedGoogle Scholar
  70. Rodríguez SR (2003) Consumption of drift kelp by intertidal populations of the sea urchin Tetrapygus niger on the central Chilean coast: possible consequences at different ecological levels. Mar Ecol Prog Ser 251:141–151CrossRefGoogle Scholar
  71. Rodríguez GE, Rassweiler A, Reed DC, Holbrook SJ (2013) The importance of progressive senescence in the biomass dynamics of giant kelp (Macrocystis pyrifera). Ecology 94:1848–1858CrossRefPubMedGoogle Scholar
  72. Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaeophyceae) along a latitudinal gradient. J Phycol 45:547–559CrossRefPubMedGoogle Scholar
  73. Rothäusler E, Gutow L, Thiel M (2012) Floating seaweed and their communities. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 109–134Google Scholar
  74. Rothäusler E, Corell H, Jormalainen V (2015) Abundance and dispersal trajectories of floating Fucus vesiculosus in the Northern Baltic Sea. Limnol Oceanogr 60:2173–2184CrossRefGoogle Scholar
  75. Rothäusler E, Reinwald H, López BA, Tala F, Thiel M (2018) High acclimation potential in floating Macrocystis pyrifera to abiotic conditions even under grazing pressure—a field study. J Phycol 54:368–379CrossRefPubMedGoogle Scholar
  76. Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147CrossRefGoogle Scholar
  77. Saldías GS, Sobarzo M, Largier J, Moffat C, Letelier R (2012) Seasonal variability of turbid river plumes off Central Chile based on high-resolution MODIS imagery. Remote Sens Environ 123:220–233CrossRefGoogle Scholar
  78. Saldías GS, Largier JL, Mendes R, Pérez-Santos I, Vargas CA, Sobarzo M (2016) Satellite-measured interannual variability of turbid river plumes off Central-Southern Chile: spatial patterns and the influence of climate variability. Prog Oceanogr 146:212–222CrossRefGoogle Scholar
  79. Santelices B, Castilla JC, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar Biol 59:119–132CrossRefGoogle Scholar
  80. SERNAPESCA (2017) Anuario Estadístico de Pesca. Servicio Nacional de Pesca y Acuicultura, Ministerio de Economía, Fomento y Turismo, Gobierno de Chile, Chile.Google Scholar
  81. Smith J, Bayliss-Smith T (1998) Kelp-plucking: coastal erosion facilitated by bull-kelp Durvillaea antarctica at subantarctic Macquarie Island. Antarct Sci 10:431–438CrossRefGoogle Scholar
  82. Sobarzo M, Bravo L, Donoso D, Garcés-Vargas J, Schneider W (2007) Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off Central Chile. Prog Oceanogr 75:363–382CrossRefGoogle Scholar
  83. Song Z, Shu Q, Bao Y, Yin X, Qiao F (2015) The prediction on the 2015/16 El Niño event from the perspective of FIO-ESM. Acta Oceanol Sinica 34:67–71CrossRefGoogle Scholar
  84. Subsecretaría de Pesca y Acuicultura (2015) Veda biológica para el recurso cochayuyo Durvillaea antarctica en la VI Región del Libertador Bernardo O‘Higgins. Informe Técnico (RPESQ), No. 151/2015. Unidad de Recursos Bentónicos. Gobierno de Chile, ChileGoogle Scholar
  85. Subsecretaría de Pesca y Acuicultura (2017) Veda extractiva del recurso cochayuyo (Durvillaea antarctica), en la VII Región, 2017 Informe Técnico, No 8/2017. Comité Científico Técnico Bentónicos. Gobierno de Chile, Chile.Google Scholar
  86. Tala F, Gómez I, Luna-Jorquera G, Thiel M (2013) Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in Northern-Central Chile (30°S). Mar Biol 160:1339–1351CrossRefGoogle Scholar
  87. Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  88. Tala F, Penna-Díaz MA, Luna-Jorquera G, Rothäusler E, Thiel M (2017) Daily and seasonal changes of photobiological responses in floating bull kelp Durvillaea antarctica (Chamisso) Hariot (Fucales: Phaeophyceae). Phycologia 56:271–283CrossRefGoogle Scholar
  89. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA (2014) Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS One 9:e110841CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tapia-Lewin S, Vergara K, De La Barra C, Godoy N, Castilla JC, Gelcich S (2017) Distal impacts of aquarium trade: exploring the emerging sandhopper (Orchestoidea tuberculata) artisanal shore gathering fishery in Chile. Ambio 46:706–716CrossRefPubMedPubMedCentralGoogle Scholar
  91. Taylor DI, Schiel DR (2005) Self-replacement and community modification by the southern bull kelp Durvillaea antarctica. Mar Ecol Prog Ser 288:87–102CrossRefGoogle Scholar
  92. Thiel M (2003) Reproductive biology of Limnoria chilensis: another boring peracarid species with extended parental care. J Nat Hist 37:1713–1726CrossRefGoogle Scholar
  93. Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol Ann Rev 42:181–263Google Scholar
  94. Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Ann Rev 43:279–418Google Scholar
  95. Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, Dumont CP, Escribano R, Fernández M, Gajardo JA, Gaymer CF, Gómez I, González AE, González HE, Haye PA, Illanes JE, Iriarte JL, Lancellotti DA, Luna-Jorquera G, Luxoroi C, Manríquez PH, Marín V, Muñoz P, Navarrete SA, Pérez E, Poulin E, Sellanes J, Sepúlveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vásquez JA, Vega JMA (2007) The Humboldt Current System of Northern and Central Chile. Oceanogr Mar Biol Ann Rev 45:195–344Google Scholar
  96. Thiel M, Fraser CI (2016) The role of floating plants in dispersal of biota across habitats and ecosystems. In: Olafsson E (ed) Marine macrophytes as foundation species. CRC Press, Boca Raton, pp 76–99CrossRefGoogle Scholar
  97. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambrige, UKGoogle Scholar
  98. Vargas CA, Narváez DA, Piñones A, Navarrete SA, Lagos NA (2006) River plume dynamic influences transport of barnacle larvae in the inner shelf off Central Chile. J Mar Biol Assoc UK 86:1057–1065CrossRefGoogle Scholar
  99. Vega JMA, Vásquez JA, Buschmann AH (2005) Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997–1998. Rev Chil Hist Nat 78:33–50Google Scholar
  100. Waters JM, Craw D (2018) Cyclone-driven marine rafting: storms drive rapid dispersal of buoyant kelp rafts. Mar Ecol Prog Ser 602:77–85CrossRefGoogle Scholar
  101. Waters JM, King TM, Fraser CI, Craw D (2018) Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp. J R Soc Interface 15:20180046CrossRefPubMedPubMedCentralGoogle Scholar
  102. Westermeier R, Muller DG, Gómez I, Rivera P, Wenzel H (1994) Population biology of Durvillaea antarctica and Lessonia nigrescens (Phaeophyta) on the rocky shores of Southern Chile. Mar Ecol Prog Ser 110:187–194CrossRefGoogle Scholar
  103. Wichmann CS, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159:2035–2049CrossRefGoogle Scholar
  104. Xu M, Sakamoto S, Komatsu T (2016) Attachment strength of the subtidal seaweed Sargassum horneri (Turner) C. Agardh varies among development stages and depths. J Appl Phycol 28:3679–3687CrossRefPubMedPubMedCentralGoogle Scholar
  105. Yuras G, Ulloa O, Hormazábal S (2005) On the annual cycle of coastal and open ocean satellite chlorophyll off Chile (18°-40°S). Geophys Res Lett 32:L23604CrossRefGoogle Scholar
  106. Zar JH (2010) Biostatistical analysis. 5th Edition edn. Prentice-Hall, Inc, Upper Saddle River, New Jersey, USAGoogle Scholar
  107. ZoBell CE (1971) Drift seaweeds on San Diego county beaches. Nova Hedwigia 32(Suppl):269–314Google Scholar
  108. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.Departamento de Acuicultura y Recursos AgroalimentariosUniversidad de Los LagosOsornoChile
  3. 3.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  4. 4.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile
  5. 5.Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
  6. 6.Instituto de Ciencias Marinas y Limnológicas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  7. 7.Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA)Universidad Católica del NorteCoquimboChile
  8. 8.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile

Personalised recommendations