Advertisement

Seeding of fragments of the agarophyte Gelidium lingulatum (Rhodophyta, Gelidiales) for the repopulation of lower levels of wave-exposed, intertidal rocky shores

  • Ricardo D. Otaíza
  • Julián H. Cáceres
  • Catalina Y. Rodríguez
  • Álvaro G. Sanhueza
Article

Abstract

Gelidium lingulatum is a frequent species at low intertidal levels of wave-exposed, rocky shores in central Chile. It is harvested from natural stands by artisanal fishermen and sold as raw material for the extraction of the valuable phycocolloid agar. Mass cultivation of this species has not been developed. In this study, we describe a device that allows seeding fragments of G. lingulatum to be used to increase biomass or to repopulate areas damaged by natural or anthropogenic disasters. The device consists of a nylon rivet and a mesh-washer that is pushed in perforations drilled on the rocky shore, holding the seaweed fragments appressed to the substratum favoring secondary attachment. Seeding was done on three sites in each of three localities within the Biobío Region (southern Chile), considering also the type of substratum (rock, calcareous crusts, and barnacles). The transplant units were installed in (austral) winter, 2016, and evaluated in spring and summer 2017. Results showed that, except for human intervention, most seeded fragments grew successfully as new patches and growth rates of up to 1.2% day−1 were recorded. Some significant differences were detected among sites and among substrata, but these can be interpreted as differences in the environmental conditions at the small spatial scale where the patch was growing. This device is simple and inexpensive and our results show that it is effective in producing new patches of G. lingulatum, such that it can be easily applied in repopulation or restoration programs.

Keywords

Growth Agarophyte Production Restoration Transplant Vegetative reproduction 

Notes

Acknowledgements

We want to thank M. Pizarro and E. Flores for their invaluable help in the field. We also want to thank the members of the artisanal fishermen associations of Punta Lavapié and Caleta Yani for their support during this study.

Funding information

This research was funded by Fondef (Conicyt) and the Regional Government of the Región del Biobío, Chile (grant D13R20031 of the Fondef-Regional Program).

References

  1. Arrontes J (1993) Nature of the distributional boundary of Fucus serratus on the north shore of Spain. Mar Ecol Prog Ser 93:183–193CrossRefGoogle Scholar
  2. Benes KM, Bracken MES (2016) Nitrate uptake varies with tide height and nutrient availability in the intertidal seaweed Fucus vesiculosus. J Phycol 52:868–876CrossRefGoogle Scholar
  3. Blanchette CA (1997) Size and survival of intertidal plants in response to wave action: a case study with Fucus gardneri. Ecology 78:1563–1578CrossRefGoogle Scholar
  4. Broitman B, Navarrete SA, Smiths F, Gaines SD (2001) Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser 224:21–34CrossRefGoogle Scholar
  5. Broitman BR, Véliz F, Manzur T, Wieters EA, Finke GR, Fornes PA, Valdivia N, Navarrete SA (2011) Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Rev Chil Hist Nat 84:43–154CrossRefGoogle Scholar
  6. Buggeln RG (1981) Morphogenesis and growth regulators. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwells, Oxford, pp 627–660Google Scholar
  7. Campbell AH, Marzinelli EM, Vergés A, Coleman MA, Steinberg PD (2014) Towards restoration of missing underwater forests. PLoS One 9:e84106CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carney LT, Waaland JR, Klinger T, Ewing K (2005) Restoration of the bull kelp Nereocystis luetkeana in nearshore rocky habitats. Mar Ecol Prog Ser 302:49–61CrossRefGoogle Scholar
  9. Castilla JC, Manríquez PH, Camaño A (2010) Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarker species. Mar Ecol Prog Ser 418:17–23CrossRefGoogle Scholar
  10. Correa JA, Lagos NA, Medina MH, Castilla JC, Cerda M, Ramírez M, Martínez E, Faugeron S, Andrade S, Pinto R, Contreras L (2006) Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: experimental, restoration and management applications. J Exp Mar Biol Ecol 335:13–18CrossRefGoogle Scholar
  11. D’Antonio CM, Gibor A (1985) A note on some influences of photon flux density on the morphology of germlings of Gelidium robustum (Gelidiales, Rhodophyta) in culture. Bot Mar 28:313–316CrossRefGoogle Scholar
  12. Dudgeon SR, Steneck RS, Davison IR, Vadas RL (1999) Coexistence of similar species in a space-limited intertidal zone. Ecol Monogr 69:331–352CrossRefGoogle Scholar
  13. Falace A, Zanelli E, Bressan G (2006) Algal transplantation as a potential tool for artificial reef management and environmental mitigation. Bull Mar Sci 78:161–166Google Scholar
  14. Friedlander M (2008) Advances in cultivation of Gelidiales. J Appl Phycol 20:451–456CrossRefGoogle Scholar
  15. Hernández-Carmona G, García O, Robledo D, Foster M (2000) Restoration techniques for Macrocystis pyrifera (Phaeophyceae) populations at the southern limit of their distribution in México. Bot Mar 43:273–284CrossRefGoogle Scholar
  16. Hoffmann AJ, Santelices B (1997) Flora marina de Chile central. Ediciones Universidad Católica de Chile, SantiagoGoogle Scholar
  17. Jacob C, Buffard A, Pioch S, Thorin S (2018) Marine ecosystem restoration and biodiversity. Ecol Eng 120:585–594CrossRefGoogle Scholar
  18. Juanes P, Puente A (1993) Differential reattachment capacity of isomorphic life history phases of Gelidium sesquipedale. Hydrobiologia 260/261:139–144CrossRefGoogle Scholar
  19. Ladah L, Bermudez R, Pearson G, Serrão E (2003) Fertilization success and recruitment of dioecious and hermaphroditic fucoid seaweeds with contrasting distributions near their southern limit. Mar Ecol Prog Ser 262:173–183CrossRefGoogle Scholar
  20. López BA, Tellier F, Retamal-Alarcón JC, Pérez-Araneda K, Fierro AO, Macaya EC, Tala F, Thiel M (2017) Phylogeography of two intertidal seaweeds, Gelidium lingulatum and G. rex (Rhodophyta: Gelidiales), along the South East Pacific: patterns explained by rafting dispersal? Mar Biol 164:188CrossRefGoogle Scholar
  21. Marsden AD, DeWreede RE, Levings CD (2003) Survivorship and growth of Fucus gardneri after transplant to an acid mine drainage-polluted area. Mar Pollut Bull 46:65–73CrossRefPubMedGoogle Scholar
  22. Molis M, Scrosati RA, El-Belely EF, Lesniowski TJ, Wahl M (2015) Wave-induced changes in seaweed toughness entail plastic modifications in snail traits maintaining consumption efficacy. J Ecol 103:851–859CrossRefGoogle Scholar
  23. Montalva S, Santelices B (1981) Interspecific interference among species of Gelidium from central Chile. J Exp Mar Biol Ecol 53:77–88CrossRefGoogle Scholar
  24. Oliger P, Santelices B (1981) Physiological ecology studies on Chilean Gelidiales. J Exp Mar Biol Ecol 53:65–75CrossRefGoogle Scholar
  25. Otaíza RD, Rodríguez CY, Cáceres JH, Sanhueza AG (2018) Fragmentation of thalli and secondary attachment of fragments of the agarophyte Gelidium lingulatum (Rhodophyta, Gelidiales). J Appl Phycol 30:1921–1931CrossRefGoogle Scholar
  26. Perkol-Finkel S, Ferrario F, Nicotera V, Airoldi L (2012) Conservation challenges in urban seascapes: promoting the growth of threatened species on coastal infrastructures. J Appl Phycol 49:1457–1466Google Scholar
  27. Perrone C, Felicini G, Bottalico A (2006) The prostrate system of the Gelidiales: diagnostic and taxonomic importance. Bot Mar 49:23–33CrossRefGoogle Scholar
  28. Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Monografías Biológicas 5, Ediciones Universidad Católica de Chile, Santiago de ChileGoogle Scholar
  29. Rodríguez CY, Otaíza RD (2018) Factors affecting morphological transformation and secondary attachment of apexes of Chondracanthus chamissoi (Rhodophyta, Gigartinales). J Appl Phycol 30:1157–1166CrossRefGoogle Scholar
  30. Saada G, Nicastro KR, Jacinto R, McQuaid CD, Serrão EA, Pearson GA Zardi GI (2016) Taking the heat: distinct vulnerability to thermal stress of central and threatened peripheral lineages of a marine macroalga. Divers Distrib 22:1060–1068CrossRefGoogle Scholar
  31. Salinas J (1991) Spray system for re-attachment of Gelidium sesquipedale (Clem) Born et Thur. (Gelidiales. Rhodophyta). Hydrobiologia 221:107–117CrossRefGoogle Scholar
  32. Sánchez I, Fernández C (2006) Resource availability and invasibility in an intertidal macroalgal assemblage. Mar Ecol Prog Ser 313:85–94CrossRefGoogle Scholar
  33. Santelices B (1988) Synopsis of biological data on the seaweed genera Gelidium and Pterocladia (Rhodophyta). FAO Fisheries Synopsis N° 145:1–55Google Scholar
  34. Santelices B (1989) Algas marinas de Chile, 399 pp. Ediciones Universidad Católica de Chile, SantiagoGoogle Scholar
  35. Santelices B (1991) Production ecology of Gelidium. Hydrobiologia 221:31–44CrossRefGoogle Scholar
  36. Santelices B (2007) Testing the usefulness of attachment structures in the taxonomy of small-sized gelidioids. Phycologia 46:293–299CrossRefGoogle Scholar
  37. Santelices B, Varela D (1994) Abiotic control of reattachment in Gelidium chilense (Montagne) Santelices & Montalva (Gelidiales; Rhodophyta). J Exp Mar Biol Ecol 177:145–155CrossRefGoogle Scholar
  38. Sernapesca (1990–2016) Anuarios Estadísticos de Pesca y Acuicultura 1990-2016. Servicio Nacional de Pesca y Acuicultura de ChileGoogle Scholar
  39. Shaughnessy FJ, DeWreede RE (2001) Size, survival and the potential for reproduction in transplants of Mazzaella splendens and M. linearis (Rhodophyta). Mar Ecol Prog Ser 222:109–118CrossRefGoogle Scholar
  40. Stekoll MS, Deysher L (1996) Recolonization and restoration of upper intertidal Fucus gardneri (Fucales, Phaeophyta) following the Exxon Valdez oil spill. Hydrobiologia 326/327:311–316CrossRefGoogle Scholar
  41. Susini ML, Mangialajo L, Thibaut T, Meinesz A (2007) Development of a transplantation technique of Cystoseira amentaceae var. stricta and Cystoseira compressa. Hydrobiologia 580:241–244CrossRefGoogle Scholar
  42. Terawaki T, Yoshikawa K, Yoshida G, Uchimura M, Iseki K (2003) Ecology and restoration techniques for Sargassum beds in the Seto Inland Sea, Japan. Mar Pollut Bull 47:198–201CrossRefPubMedGoogle Scholar
  43. Vásquez JA, Tala F (1995) Repopulation of intertidal areas with Lessonia nigrescens in northern Chile. J Appl Phycol 7:347–349CrossRefGoogle Scholar
  44. Whitaker SG, Smith JR, Murray SN (2010) Reestablishment of the southern California rocky intertidal brown alga, Silvetia compressa: an experimental investigation of techniques and abiotic and biotic factors that affect restoration success. Restor Ecol 18:18–26CrossRefGoogle Scholar
  45. Wieters EA, Medrano A, Quiroga G (2013) Spatial variation in photosynthetic recovery of intertidal turf algae from acute UVB and temperature stress associated with low tides along the central coast of Chile. J Exp Mar Biol Ecol 449:340–348CrossRefGoogle Scholar
  46. Yu YQ, Zhang QS, Tang YZ, Zhang SB, Lu ZC, Chu SH, Tang XX (2012) Establishment of intertidal seaweed beds of Sargssum thunbergii through habitat creation and germling seeding. Ecol Eng 44:10–17CrossRefGoogle Scholar
  47. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  48. Zis T, Ronningen V, Scrosati R (2004) Minor improvement for intertidal seaweeds and invertebrates after acid mine drainage diversion at Britannia Beach, Pacific Canada. Mar Pollut Bull 48:1040–1047CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
  2. 2.Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS)UCSCConcepciónChile
  3. 3.Centro de Investigación e Innovación para el Cambio Climático (CiiCC)Universidad Santo TomásSantiagoChile
  4. 4.Magíster en Ecología Marina, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile

Personalised recommendations