Journal of Applied Phycology

, Volume 31, Issue 2, pp 915–928 | Cite as

Effects of temperature and salinity on the reproductive phases of Macrocystis pyrifera (L.) C. Agardh (Phaeophyceae) in the Magellan region

  • Juan Pablo RodríguezEmail author
  • J. Terrados
  • S. Rosenfeld
  • F. Méndez
  • J. Ojeda
  • A. Mansilla


The region of Magallanes has the world’s largest sub-Antarctic environments, including the heterogeneous habitats of archipelagos, fjords, channels, and inlets formed by ice advancing and retreating during Quaternary glacial processes. In marine ecosystems, the temperature, salinity, and photoperiod are key parameters which delimit the survival, reproduction and development of the macroalgae and, therefore, the biogeography of numerous sub-Antarctic species. In this research, we compare the reproductive development patterns in spores of Macrocystis pyrifera coming from places with different salinities along longitudinal and latitudinal gradients in Skyring Sound, Otway Sound, the Strait of Magellan (Possession Bay and Puerto del Hambre), and the Beagle Channel (Paula Bay). Laboratory analyses included four salinities and two different temperatures, comparing the percentage of spore germination, sex ratio in females and male gametophytes, and the development of gametogenesis through the proportion of gametophytes and sporophytes, with a factorial experimental design. The best germination percentages were obtained in Puerto del Hambre; the best sex ratio, on the other hand, was in Skyring Sound; finaly, for gametogenesis development, the best results were obtained in Otway Sound and Possession Bay. We prove the temperature and salinity effect over the studied population; moreover, these results demonstrate that at the end of the cycle each population develops more effectively in their local conditions, evidence of a local adaptation in M. pyrifera populations living in contrasting sites in the same region. This is crucial to understand how these populations react to the effect of environmental stressors; furthermore, the selection of appropriate conditions is also an important factor for the future commercial cultivation management of these important macroalgae.


Phaeophyta Environmental heterogeneity Salinity Temperature Sub-Antarctic region Chile 



The authors wish to thank project FONDECYT 1140940 “Macroalgal adaptive radiation: potential links to ecological niche diversity in the ecoregion of Magallanes and Chilean Antarctic” and project FONDECYT 1180433 “Genomic, physiological and ecological approaches to examine Antarctic and Sub-Antarctic macroalgal responses to climate change and glacial retreat”.

Funding information

We are thankful for the graduate scholarships awarded by the Institute of Ecology and Biodiversity granted to FM (ICM, P05- 002), JPR (ICM, P05-002), and SR (ICM P05-002).

Supplementary material

10811_2018_1693_MOESM1_ESM.docx (893 kb)
ESM 1 (DOCX 893 kb)


  1. Aguirre G, Capitanio F, Lovrich G, Esnal GB (2012) Seasonal variability of metazooplankton in coastal sub-Antarctic waters (Beagle Channel). Mar Biol Res 8:341–353CrossRefGoogle Scholar
  2. Aldea C, Rosenfeld S (2011) Macromoluscos intermareales de sustratos rocosos de la playa Buque Quemado, Estrecho de Magallanes, sur de Chile. Rev Biol Mar Oceanogr 46:115–124CrossRefGoogle Scholar
  3. Ávila M, Merino C, Guissen K et al (2010) Manual de cultivo de macroalgas pardas. Desde el Laboratorio al océano. Universidad Arturo Prat 33 ppGoogle Scholar
  4. Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86CrossRefGoogle Scholar
  5. Bozinovic F, Calosi P, Spicer (2011) Physiological correlates of geographic range in animals. Annu Rev Ecol Evol Syst 42:155–179CrossRefGoogle Scholar
  6. Buschmann A, Vásquez J, Osorio P et al (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862CrossRefGoogle Scholar
  7. Clapperton C (1994) The quaternary glaciation of Chile: a review. Rev Chil Hist Nat 67:369–383Google Scholar
  8. Diez M, Florentín O, Lovrich G (2011) Distribución y estructura poblacional del cangrejo Halicarcinus planatus (Brachyura, Hymenosomatidae) en el Canal Beagle, Tierra del Fuego. Rev Biol Mar Oceanogr 46:141–155CrossRefGoogle Scholar
  9. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492CrossRefGoogle Scholar
  10. Gaitán-Espitia J, Hancock J, Padilla-Gamiño J, Rivest EB, Blanchette CA, Reed DC, Hofmann GE (2014) Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. J Exp Mar Biol Ecol 457:51–58CrossRefGoogle Scholar
  11. Graham, Vasquez J, Buschmann A (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol 45:39Google Scholar
  12. Izquierdo J, Pérez-Ruzafa I, Gallardo T (2002) Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgol Mar Res 55:285–292CrossRefGoogle Scholar
  13. Kilian R, Baeza O, Breuer S, Rios F, Arz H, Lamy F, Wirtz J et al (2013) Late glacial and holocene paleogeographical and paleoecological evolution of the Seno Skyring and Otway fjord systems in the Magellan Region. An Inst Patagonia 41:5–26CrossRefGoogle Scholar
  14. Kirst G (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Biol 41:21–53CrossRefGoogle Scholar
  15. Leal P, Hurd C, Fernández P, Roleda M (2017a) Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction. Mar Biol 164:1–7.
  16. Leal P, Hurd C, Fernández P, Roleda MY (2017b) Ocean acidification and kelp development: reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J Phycol 53:557–566CrossRefGoogle Scholar
  17. Lee J, Brinkhuis B (1988) Seasonal light and Temperatura interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J Phycol 24(2):181–191Google Scholar
  18. Mansilla A, Palacios M, Aguilar S (2004) Efecto de la Salinidad en el Desarrollo Inicial de Sarcothalia Crispata (Bory) Leister (Rhodophyta, Gigartinales) Bajo Condiciones de Laboratorio. An Inst Patagonia 32:13–23Google Scholar
  19. Mansilla A, Ramírez-García P, Murcia S et al (2013) Distribution and biomass of Ruppia filifolia (Phil.) Skottsberg, Ruppiaceae in Skyring Sound, Sub-Antarctic Ecoregion of Magallanes, Chile. An Inst Patagonia 41:91–97Google Scholar
  20. Mansilla A, Rodriguez JP, Souza JMC, Rosenfeld S, Ojeda J, Yokoya NS (2014a) Growth responses to temperature, salinity and nutrient variations, and biomass variation and phenology of Ahnfeltia plicata (Rhodophyta, Ahnfeltiales): a commercially interesting agarophyte from the Magellanic Region, Chile. J Appl Phycol 26:1133–1139CrossRefGoogle Scholar
  21. Mansilla A, Rosenfeld S, Rendoll J, Murcia S, Werlinger C, Yokoya NS, Terrados J (2014b) Tolerance response of Lessonia flavicans from the sub-Antarctic ecoregion of Magallanes under controlled environmental conditions. J Appl Phycol 26(5):1971–1977CrossRefGoogle Scholar
  22. Marambio J (2017) Drivers-conductores capaces de modelar cambios estacionales en la fisiología de la especie Macrocystis pyrifera (Ochrophyta) presente en la ecoregión de Magallanes. Thesis, Universidad de MagallanesGoogle Scholar
  23. Marambio J, Mendez F, Ocaranza P, Rodriguez JP, Rosenfeld S, Ojeda J, Murcia S, Terrados J, Bischof K, Mansilla A (2017) Seasonal variations of the photosynthetic activity and pigment concentrations in different reproductive phases of Gigartina skottsbergii (Rhodophyta, Gigartinales) in the Magellan region, sub-Antarctic Chile. J Appl Phycol 29:721–729CrossRefGoogle Scholar
  24. Muñoz V, Hernández-González MC, Buschmann AH, Graham MH, Vásquez JA (2004) Variability in per capita oogonia and sporophyte production from giant kelp gametophytes (Macrocystis pyrifera, Phaeophyceae). Rev Chil Hist Nat 77:639–647Google Scholar
  25. Neushul M (1963) Studies on the giant kelp, Macrocystis. II. Reproduction. Am J Bot 50:354–359CrossRefGoogle Scholar
  26. Ojeda J, Rosenfeld S, Marambio J, Rozzi R, Mansilla A (2014) Patrones estacionales y espaciales de la diversidad de moluscos intermareales de bahía Róbalo, canal Beagle, Reserva de la Biosfera Cabo de Hornos, Chile. Rev Biol Mar Oceanogr 49:493–509CrossRefGoogle Scholar
  27. Ojeda J, Rodríguez J, Rosenfeld S, Vega N (2017) Comparación de la estructura comunitaria entre plataformas y bolones del intermareal en isla Navarino, Reserva de Biósfera Cabo de Hornos. An Inst Patagonia 45:33–43CrossRefGoogle Scholar
  28. Oppliger L, Correa J, Faugeron S, Beltrán J, Tellier F, Valero M, Destombe C (2011) Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): effect of latitude, temperature and marginality. J Phycol 47:5–12CrossRefGoogle Scholar
  29. Oppliger L, Correa J, Engelen A, Tellier F, Vieira V, Faugeron S, Valero M, Gomez G, Destombe C (2012) Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. PLoS One 7:e39289CrossRefGoogle Scholar
  30. Palacios M, Mansilla A (2003) Desarrollo de Gametófitos y Esporófitos de Macrocystis pyrifera (L.) Agardh (Laminariales: Lessoniaceae) de la Región de Magallanes en Condiciones de Laboratorio. Anal Inst Patagonia 31:43–53Google Scholar
  31. Pérez V (2000) Cronología de antecedentes para la Historia de las Ciencias Naturales de la Región de Magallanes: Siglo XVI al XIX. Universidad de Magallanes, Punta Arenas 234 ppGoogle Scholar
  32. Plá P, Alveal K (2012) Development of Macrocystis pyrifera from spores and gametes on artificial substrate. Algal production in a surface culture. Lat Am J Aquat Res 40:292–299CrossRefGoogle Scholar
  33. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, AustriaGoogle Scholar
  34. Ríos C, Arntz W, Gerdes D, Mutschke E, Montiel A (2007) Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan, Chile. Polar Biol 31:89–100CrossRefGoogle Scholar
  35. Rodríguez J, Terrados J, Rosenfeld S et al (2018) Factores que regulan el desarrollo reproductivo de Macrocystis pyrifera L.C. Agardh (Phaeophyceae), en la región de Magallanes. Thesis, Universidad de MagallanesGoogle Scholar
  36. Rosenfeld S, Ojeda J, Hüne M, Mansilla A, Contador T (2014) Egg masses of the Patagonian squid Doryteuthis (Amerigo) gahi attached to giant kelp (Macrocystis pyrifera) in the sub-Antarctic ecoregion. Polar Res 33:21636CrossRefGoogle Scholar
  37. Rosenfeld S, Marambio J, Ojeda J, J Rodríguez JP, González-Wevar C, Gerard K, Contador T, Pizarro G, Mansilla A (2018) Trophic ecology of two coexisting Sub-Antarctic limpets of the genus Nacella: spatio-temporal variation in food availability and diet composition of Nacella magellanica and N. deaurata in the Sub-Antarctic Ecoregion of Magellan. ZooKeys 738:1–25CrossRefGoogle Scholar
  38. Rozzi R, Massardo F, Mansilla A, Squeo FA, Barros E, Contador T, Frangopulos M, Poulin E, Rosenfeld S, Goffinet B, González-Weaver C, MacKenzie R, Crego RD, Viddi F, Naretto J, Gallardo MR, Jiménez JE, Marambio J, Pérez C, Rodríguez JP, Méndez F, Barroso O, Rendoll J, Schuttler E, Kennedy J, Convey P, Russell S, Berchez F, Sumida PYG, Rundell P, Rozzi A, Armesto J, Kalin-Arroyo M, Martinic M (2017) Parque Marino Cabo de Hornos-Diego Ramirez. Programa de Conservación Biocultural Subantártica, Ediciones Universidad de Magallanes, Punta Arenas, p 274Google Scholar
  39. Russell G (1987) Spatial and environmental components of evolutionary change: interactive effects of salinity and temperature on Fucus vesiculosus as an example. Helgol Wiss Meeresunt 41:371–376CrossRefGoogle Scholar
  40. Schiel D, Foster M (2006) The population biology of large brown algae: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372CrossRefGoogle Scholar
  41. Sexton J, McIntyre P, Angert L, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436CrossRefGoogle Scholar
  42. SHOA (2015) Servicio Hidrográfico y Oceanográfico de la Armada. Datos temperatura superficial del mar. Accessed 23 July 2015
  43. Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-east Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  44. Valdenegro A, Silva N (2003) Caracterización oceanográfica física y química de la zona de canales y fiordos australes de Chile entre el estrecho de Magallanes y cabo de Hornos (CIMAR 3 Fiordos). Cienc Tecnol Mar 26:19–60Google Scholar
  45. Vergara J (2003) Tipología y clasificación de fiordos y piedmonts submarinos de Magallanes, Chile. Invest Geogr Chile 37:21CrossRefGoogle Scholar
  46. Wiencke C, Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170CrossRefGoogle Scholar
  47. Zacher K, Bernard M, Bartsch I, Wiencke C (2016) Survival of early life history stages of Arctic kelps (Kongsfjorden, Svalbard) under multifactorial global change scenarios. Polar Biol 39:2009–2020CrossRefGoogle Scholar
  48. Zuur A, Leno E, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York 574 ppCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos (LEMAS)Universidad de MagallanesPunta ArenasChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Instituto Mediterráneo de Estudios Avanzados, (IMEDEA, CSIC-UIB)MallorcaSpain
  4. 4.School of Environmental StudiesUniversity of VictoriaVictoriaCanada

Personalised recommendations