Advertisement

Journal of Applied Phycology

, Volume 31, Issue 2, pp 905–913 | Cite as

Variation of the photosynthetic activity and pigment composition in two morphotypes of Durvillaea antarctica (Phaeophyceae) in the sub-Antarctic ecoregion of Magallanes, Chile

  • F. MéndezEmail author
  • J. Marambio
  • J. Ojeda
  • S. Rosenfeld
  • J. P. Rodríguez
  • F. Tala
  • A. Mansilla
VI REDEALGAS WORKSHOP (RIO DE JANEIRO, BRAZIL)

Abstract

The environment of the sub-Antarctic ecoregion of Magallanes is highly heterogenous due to the influence of three oceans (Pacific, Atlantic, and Southern) and the effects of postglacial events such as the Last Glacial Maximum. In the sub-Antarctic ecoregion of Magallanes, the presence of two morphotypes of Durvillaea antarctica has recently been recorded that are related to the specific hydrodynamic configuration of the sites in the region. This study investigates the photosynthetic activity and pigment composition during two periods of the year in these two morphotypes of D. antarctica. One of them has broad and laminar fronds and occurs in wave-protected environments, while the other morphotype is characterized by cylindrical and elongated fronds and inhabits wave-exposed environments. The adult specimens of the “elongated-cylindrical” morphotype were collected in Seno Otway (53.1° S, 71.5° W) and the specimens of the “laminar” morphotype in Bahía el Águila, San Isidro (53.7° S, 70.9° W). ETRmax, α, and Ek as parameters of the ETR-E curves were higher for the “laminar” than the “elongated-cylindrical” morphotype, resulting in significant values. The concentration of fucoxanthin was statistically higher for the morphotype “laminar” compared to the morphotype “elongated-cylindrical.” Both morphotypes exhibited different photosynthetic activities, perhaps attributed to their morphology, floatation capacity, and environment.

Keywords

Durvillaea antarctica Phaeophyceae Morphology Photosynthesis Pigments Sub-Antarctic Ecophysiology 

Notes

Acknowledgments

Project FONDECYT 1131023 to FT and AM (long-distance dispersal of macroalgae at high latitudes-floating kelp rafts capacity of nature under conditions along latitudinal), 1140940-AM (macroalgal adaptive radiation: potential links to the diversity of ecological niches in the Magellan and Antarctic ecoregion) and 1180433-AM (genomic, physiological, and ecological approaches to examine Antarctic and sub-Antarctic macroalgal responses to climate change and glacial retreat) of the National Council of Scientific and Technological Research of Chile (CONICYT). We are also grateful for the scholarships awarded by the Institute of Ecology and Biodiversity (IEB) to Fabio Méndez (ICM P05-002) and Juan Pablo Rodríguez (ICM P05-002). The facilities and equipment used for this study were kindly provided by the Laboratorio de Macroalgas Antárticas y Subantárticas (LMAS) and the Instituto de la Patagonia of the Universidad de Magallanes (UMAG) in Punta Arenas, Chile.

References

  1. Astorga-España MS, Mansilla A, Ojeda J, Marambio J, Rosenfeld S, Mendez F, Rodríguez JP, Ocaranza P (2017) Nutritional properties of dishes prepared with sub-Antarctic macroalgae - an opportunity for healthy eating. J Appl Phycol 29:2399–2406CrossRefGoogle Scholar
  2. Barinova S (2017) Influence of macro-environmental climatic factors on distribution and productivity of freshwater algae. Int J Environ Sci Nat Res 4:1–5Google Scholar
  3. Bischof K, Gomez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006a) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Bio Technol 5:141–166CrossRefGoogle Scholar
  4. Bischof K, Rautenberger R, Brey L, Perez-Llorens JL (2006b) Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser 306:165–175CrossRefGoogle Scholar
  5. Cheshire AC, Hallam ND (1989) Morphological differences in the southern bullkelp (Durvillaea potatorum) throughout south eastern Australia. Bot Mar 32:191–197Google Scholar
  6. Cheshire AC, Conran JG, Hallam ND (1995) A cladistic analysis of the evolution and biogeography of Durvillaea (Phaeophyta) 1. J Phycol 31:644–655CrossRefGoogle Scholar
  7. Collantes G, Merino A, Lagos V (2002) Fenología de la gametogénesis, madurez de conceptáculos, fertilidad y embriogénesis en Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvillaeales). Rev Biol Mar Oceanogr 37:83–112CrossRefGoogle Scholar
  8. Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J Phycol 42:1225–1234CrossRefGoogle Scholar
  9. Colvard NB, Carrington E, Helmuth B (2014) Temperature-dependent photosynthesis in the intertidal alga Fucus gardneri and sensitivity to ongoing climate change. J Exp Mar Biol Ecol 458:6–12CrossRefGoogle Scholar
  10. Cursach JA, Suazo CG, Rau JR (2014) Depredación del lobo marino común Otaria flavescens sobre el pingüino de penacho amarillo Eudyptes c. chrysocome en Isla Gonzalo, Diego Ramírez, Sur de Chile. Rev Biol Mar Oceanogr 49:373–377CrossRefGoogle Scholar
  11. Dayton P (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245CrossRefGoogle Scholar
  12. Denny M (1999) Are there mechanical limits to size in wave-swept organisms?. J Exp Biol 202:3463–3467Google Scholar
  13. Denny M, Gaylord B, Helmuth B, Daniel T (1998) The menace of momentum: dynamic forces on flexible organisms. Limnol Oceanogr 43:955–968CrossRefGoogle Scholar
  14. Edding M, Tala F, Vásquez J (2006) Fotosíntesis, productividad y algas marinas. Ediciones Universidad de La Serena, Chile, Filología vegetalGoogle Scholar
  15. Escobar I, Morales S, Undurraga A (1999–2008) Informe de Análisis de viento. Estaciones Meteorológicas. Armada de Chile. Centro Meteorológico Valparaíso. ChileGoogle Scholar
  16. Fraser CI (2016) Change in Southern Hemisphere intertidal communities through climate cycles: the role of dispersing algae. In: Hu Z, Fraser CI (eds) Seaweed Phylogeography. Springer, Dordrecht, pp 131–143CrossRefGoogle Scholar
  17. Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci 106:3249–3253CrossRefGoogle Scholar
  18. Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203CrossRefGoogle Scholar
  19. Fraser CI, Spencer HG, Waters JM (2012) Durvillaea poha sp. nov. (Fucales, Phaeophyceae): a buoyant southern bull-kelp species endemic to New Zealand. Phycologia 51:151–156CrossRefGoogle Scholar
  20. Garrido DP, Parada RA (2008) Propiedades antioxidantes y funcionales de cinco algas chilenas sobre la calidad de pasta de salmón. TesisGoogle Scholar
  21. Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608CrossRefGoogle Scholar
  22. Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M (2013) Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar 56:3–14CrossRefGoogle Scholar
  23. Gunnarsson K, Ingólfsonn A (1995) Seasonal changes in the abundance of intertidal algae in southwestern Iceland. Bot Mar 38:69–77CrossRefGoogle Scholar
  24. Harley CDG (2002) Light availability indirectly limits herbivore growth and abundance in a high rocky intertidal community during the winter. Limnol Oceanogr 47:1217–1222CrossRefGoogle Scholar
  25. Hay CH (1979) Nomenclature and taxonomy within the genus Durvillaea Bory (Phaeophyceae: Durvilleales Petrov). Phycologia 18:191–202CrossRefGoogle Scholar
  26. Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404CrossRefGoogle Scholar
  27. Hoffmann A, Santelices B (1997) Flora marina de Chile central. Edición Universidad Católica de Chile, Santiago de ChileGoogle Scholar
  28. Huovinen P, Gomez I (2011) Spectral attenuation of solar radiation in Patagonian fjord and coastal waters and implications for algal photobiology. Cont Shelf Res 31:254–259CrossRefGoogle Scholar
  29. Huovinen P, Gómez I (2013) Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient. Polar Biol 36:1319–1332CrossRefGoogle Scholar
  30. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  31. Kelly BJ, Brown MT (2000) Variations in the alginate content and composition of Durvillaea antarctica and D. willana from southern New Zealand. J Appl Phycol 12:317–324CrossRefGoogle Scholar
  32. Kinzie RA (1993) Effects of ambient levels of solar ultraviolet radiation on zooxanthellae and photosynthesis of the reef coral Montipora verrucosa. Mar Biol 116:319–327CrossRefGoogle Scholar
  33. Koch K, Thiel M, Hagen W, Graeve M, Gómez I, Jofre D, Hofmann LC, Tala F, Bischof K (2016) Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) along a depth gradient. J Phycol 52:260–273CrossRefGoogle Scholar
  34. Lüder UH, Knoetzel J, Wiencke C (2001) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol 24:598–603CrossRefGoogle Scholar
  35. Mansilla A, Ávila M, Yokoya NS (2012) Current knowledge on biotechnological interesting seaweeds from the Magellan region. Chile Rev Bras Farmacogn 22:760–767CrossRefGoogle Scholar
  36. Mansilla A, Ávila M, Ramírez ME, Rodríguez JP, Rosenfeld S, Ojeda J, Marambio J (2013) Macroalgas marinas bentónicas de submareal somero de la ecoregión Subantártica de Magallanes, Chile. An Inst Patagon (Chile) 41:49–62Google Scholar
  37. Mansilla A, Méndez F, Murcia S, Rodríguez JP, Marambio J, Rosenfeld S, Yokoya N, Bischof K (2016) Adjustment of pigment composition in Desmarestia (Desmarestiaceae) species along a sub-Antarctic to Antarctic latitudinal gradient. Polar Res 35:29383CrossRefGoogle Scholar
  38. Mansilla AO, Avila M, Cáceres J (2017) Reproductive biology of Durvillaea antarctica (Chamisso) Hariot in the sub-Antartic ecoregion of Magallanes (51–56° S). J Appl Phycol 29:2567–2574CrossRefGoogle Scholar
  39. Marambio J, Mendez F, Ocaranza P, Rodriguez JP, Rosenfeld S, Ojeda J, Murcia S, Terrados J, Bischof K, Mansilla A (2016) Seasonal variations of the photosynthetic activity and pigment concentrations in different reproductive phases of Gigartina skottsbergii (Rhodophyta, Gigartinales) in the Magellan region, sub-Antarctic Chile. J Appl Phycol 29:721–729CrossRefGoogle Scholar
  40. Martinic Beros M (2002) Breve historia de Magallanes. Ediciones de la Universidad de Magellanes, Punta Arenas 137 ppGoogle Scholar
  41. Matsuhiro B, Zuniga E, Jashes M, Guacucano M (1996) Sulfated polysaccharides from Durvillaea antarctica. Hydrobiologia 321:77–81CrossRefGoogle Scholar
  42. Méndez F, Tala F, Rautenberger R, Ojeda J, Rosenfeld S, Rodríguez JP, Marambio J, Ocaranza P, Mansilla A (2017) Morphological and physiological differences between two morphotypes of Durvillaea antarctica (Phaeophyceae) from the sub-Antarctic ecoregion of Magallanes. Chile J Appl Phycol 29:2557–2565CrossRefGoogle Scholar
  43. Ojeda J, Rosenfeld S, Marambio J, Rozzi R, Mansilla A (2014) Patrones estacionales y espaciales de la diversidad de moluscos intermareales de bahía Róbalo, canal Beagle, Reserva de la Biosfera Cabo de Hornos. Chile Rev Biol Mar Oceanogr 49:493–509CrossRefGoogle Scholar
  44. Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la Costa del Pacífico Temperado de Sudamérica. Monografías Biológicas 5. Pontificia Universidad Católica de Chile, Santiago de ChileGoogle Scholar
  45. Rautenberger R, Wiencke C, Bischof K (2013) Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient. Polar Biol 36:1779–1789CrossRefGoogle Scholar
  46. R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, VienneGoogle Scholar
  47. Rosenfeld S, Aldea C, Mansilla A, Marambio J, Ojeda J (2015) Richness, systematics, and distribution of molluscs associated with the macroalga Gigartina skottsbergii in the Strait of Magellan, Chile: a biogeographic affinity study. ZooKeys 519:49CrossRefGoogle Scholar
  48. Rozzi R, Armesto JJ, Gutiérrez JR, Massardo F, Likens GE, Anderson CB, Poole A, Moses KP, Hargrove E, Mansilla AO, Kennedy JH, Willson M, Jax K, Jones CG, Callicott JB, Kennedy JH (2012) Integrating ecology and environmental ethics: earth stewardship in the southern end of the Americas. BioScience 62:226–236CrossRefGoogle Scholar
  49. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670CrossRefGoogle Scholar
  50. Sandbu M (2017) High arctic sea-ice algae-the use of rapid light curves to assess photosynthetic performance of different ice-algal communities. Master's thesis, Norwegian University of Science and TechnologyGoogle Scholar
  51. Santelices B (1989) Algas marinas de Chile. Distribución. Ecología. Utilización. Diversidad. Ediciones Universidad Católica de Chile, SantiagoGoogle Scholar
  52. Seely GR, Duncan MJ, Vidaver WE (1972) Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar Biol 12:184–188CrossRefGoogle Scholar
  53. Silva N, Calvete C (2002) Características oceanográficas físicas y químicas de canales australes chilenos entre el golfo de Penas y el estrecho de Magallanes. CIMAR 2 Fiordos. Cienc Tecnol Mar 25:23–88Google Scholar
  54. South GR, Hay CH (1979) Influence of wave action and latitude on morphology and standing crop of New Zealand Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvilleales). J Roy Soc NZ 9:289–296CrossRefGoogle Scholar
  55. Stevens CL, Hurd CL, Smith MJ (2002) Field measurement of the dynamics of the bull kelp Durvillaea antarctica (Chamisso) Hariot. J Exp Mar Biol Ecol 269:147–171CrossRefGoogle Scholar
  56. Tala F, Chow F (2014) Ecophysiological characteristics of Porphyra spp. (Bangiophyceae, Rhodophyta): seasonal and latitudinal variations in northern-Central Chile. J Appl Phycol 26:2159–2171CrossRefGoogle Scholar
  57. Tala F, Gómez I, Luna-Jorquera G, Thiel M (2013) Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in northern-Central Chile (30°S). Mar Biol 160:1339–1351CrossRefGoogle Scholar
  58. Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the south-East Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  59. Tala F, Penna-Díaz MA, Luna-Jorquera G, Rothäusler E, Thiel M (2017) Daily and seasonal changes of photobiological responses in floating bull kelp Durvillaea antarctica (Chamisso) Hariot (Fucales: Phaeophyceae). Phycologia 56:271–283CrossRefGoogle Scholar
  60. Valdenegro A, Silva N (2003) Caracterización oceanográfica física y química de la zona de canales y fiordos australes de Chile entre el estrecho de Magallanes y cabo de Hornos (CIMAR 3 Fiordos). Ciencia y Tecnología del Mar 26:19–60Google Scholar
  61. Vanitha A, Chandra S (2012) Studies on photosynthetic pigments of some red algae of Covelong, Chennai (India). Int J Curr Res 149–154Google Scholar
  62. Venegas M, Matsuhiro B, Edding ME (1993) Alginate composition of Lessonia trabeculata (Phaeophyta: Laminariales) growing in exposed and sheltered habitats. Bot Mar 36:47–52CrossRefGoogle Scholar
  63. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) GLM and GAM for count data In: Mixed effects models and extensions in ecology with R. Springer, New York, NY, pp. 209–243Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratorio de Macroalgas Antárticas y Subantárticas (LMAS), Facultad de CienciasUniversidad de MagallanesPunta ArenasChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Programa de Magister en Ciencias mención Manejo y Conservación de Recursos Naturales en Ambientes SubantárticosUniversidad de MagallanesPunta ArenasChile
  4. 4.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  5. 5.Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile

Personalised recommendations