Advertisement

Toxicity testing of cosmetic ingredients using gametophyte beads of the brown alga Undaria pinnatifida (Laminariales, Phaeophyta)

  • Hojun Lee
  • Juseon Lee
  • Murray T. Brown
  • Jihae Park
  • Christophe Vieira
  • Taejun HanEmail author
Article

Abstract

A 6-h toxicity test of cosmetic ingredients (methylparaben, 2-phenoxyethanol, sodium dodecyl sulfate, triethanolamine) was developed, based on the photosynthetic maximum quantum yield (Fv/Fm) of immobilized gametophytes of the brown macroalga Undaria pinnatifida. From calculated EC50 values, the toxicity ranking of the tested ingredients is: SDS (0.0060%) > MP (0.0634%) > 2-PE (0.2418%) > TEA (3.7023%). Compared to the results from conventional endpoints with other ecotoxicity test organisms, measurements of Fv/Fm is a more sensitive indicator of the toxic effects of cosmetic ingredients. The present technique is simple, rapid, practical, accurate, and requires little space to carry out. This novel method will be a useful tool for assessing the toxicity of a wide range of cosmetic ingredients once the respective sensitivities are fully established.

Keywords

Phaeophyceae Undaria pinnatifida Immobilized gametophytes Alginate bead Toxicity test Cosmetic ingredients 

Notes

Funding information

This work was supported by a Grant of Incheon National University Research (grant no. 2012-0341).

References

  1. Admiraal W, Blanck H, Buckert-de Jong M, Guasch H, Ivorra N, Lehmann V, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res 33:1989–1996CrossRefGoogle Scholar
  2. Akhtar N, Iqba J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aksu Z, Egrtli G, Kutsal T (1998) A comparative study of copper(II) biosorption on ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochem 33:393–400CrossRefGoogle Scholar
  4. Alhakawati MS, Banks CJ (2004) Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. J Environ Manag 72:195–204CrossRefGoogle Scholar
  5. Anderson BS, Hunt JW, Piekarski W (1997) Recent advances in toxicity test methods using kelp gametophytes. In: Well PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology: advances, techniques, and practice. CRC Press, Boca Raton, pp 255–268Google Scholar
  6. Awasthi M, Rai LC (2005) Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda. Ecotoxicol Environ Saf 61:268–272PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bionetics L (1974) Mutagenic evaluation of compound FDA 71–38, methyl paraben. US NTIS Report. PB245 pp 459Google Scholar
  8. Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279CrossRefGoogle Scholar
  9. Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DF, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Marray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352CrossRefGoogle Scholar
  11. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532PubMedCrossRefPubMedCentralGoogle Scholar
  12. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25:425–432PubMedCrossRefPubMedCentralGoogle Scholar
  13. Burridge TR, Bidwell J (2002) Review of the potential use of brown algal ecotoxicological assays in monitoring effluent discharge and pollution in southern Australia. Mar Pollut Bull 45:140–147PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen Y-C (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and application for water quality control in fish culture. Aquaculture 195:71–80CrossRefGoogle Scholar
  15. Chen Y-C (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. J Appl Phycol 15:439–444CrossRefGoogle Scholar
  16. Connan S, Stengel D (2011) Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquat Toxicol 104:94–107PubMedCrossRefPubMedCentralGoogle Scholar
  17. Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12:12741–12771PubMedCrossRefPubMedCentralGoogle Scholar
  18. Corrêa AXR, Tamanaha MST, Horita CO, Radetski MR, Corrêa R, Radetski CM (2009) Natural impacted fresh waters: in situ use of alginate immobilized algae to the assessment of algal response. Ecotoxicology 18:464–469PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cosmetic Ingredient Review (CIR) (2005) Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate. Int J Toxicol 24:1–102Google Scholar
  20. CTFA (2005) Calculation of margin of safety. Adult and baby exposures. Unpublished data submitted by CTFAGoogle Scholar
  21. DePass LR, Fowler EH, Leung HW (1995) Subchronic dermal toxicity study of triethanolamine in C3H/HeJ mice. Food Chem Toxicol 33:675–680PubMedCrossRefPubMedCentralGoogle Scholar
  22. Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–390Google Scholar
  23. European Central Bank (2006) Annual Report 2005. Available from https://www.ecb.europa.eu/pub/annual/html/index.en.html
  24. European Central Bank (2008) Annual Report 2007. Available from https://www.ecb.europa.eu/pub/annual/html/index.en.html
  25. European Chemicals Agency (2016) Information on chemicals. Available from http://echa.europa.eu/information-on-chemicals
  26. Fang TC, Dai JX, Chen DQ (1982) Parthenogenesis and the genetic properties of parthenosporophytes of Undaria pinnatifida. Acta Oceanol Sinica 1:107–110Google Scholar
  27. Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22:299–310CrossRefGoogle Scholar
  28. Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, Marks JG Jr, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2013) Safety assessment of triethanolamine and triethanolamine-containing ingredients as used in cosmetics. Int J Toxicol 32:59S–83SPubMedCrossRefPubMedCentralGoogle Scholar
  29. Frederiksen H, Jørgensen N, Andersson AM (2011) Parabens in urine, serum and seminal plasma from healthy Danish men determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Expo Sci Environ Epidemiol 21:262–271PubMedCrossRefPubMedCentralGoogle Scholar
  30. Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors Actuators B Chem 51:256–260CrossRefGoogle Scholar
  31. Gamer AO, Rossbacher R, Kaufmann W, van Ravenzwaay B (2008) The inhalation toxicity of di- and triethanolamine upon repeated exposure. Food Chem Toxicol 46:2173–2183PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gao X, Endo H, Taniguchi K, Agatsuma Y (2013) Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol 25:269–275CrossRefGoogle Scholar
  33. Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770CrossRefGoogle Scholar
  34. Gee AR, Dudeney AWL (1987) Adsorption and crystallization of gold at biological surfaces. In: Norris PR, Kelly DP (eds) Proceeding of the International Symposium on Biohydrometallurgy. Warwick, UK, pp 437–451Google Scholar
  35. Gibbon BC, Kropf DL (1991) pH gradients and cell polarity in Pelvetia embryos. Protoplasma 163:43–50CrossRefGoogle Scholar
  36. Gordon VC (1992) Utilization of biomacromolecular in vitro assay systems in the prediction of in vivo toxic responses. Lens Eye Toxic Res 9:211–227PubMedPubMedCentralGoogle Scholar
  37. Gottschalck TE, Bailey JE (2010) International cosmetic ingredient dictionary and handbook. Personal Care Products Council, Washington, DCGoogle Scholar
  38. Hallier UW, Park RB (1969) Photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum. Plant Physiol 44:535–539PubMedPubMedCentralCrossRefGoogle Scholar
  39. Han T, Choi GW (2005) A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta). Aquat Toxicol 75:202–212PubMedCrossRefPubMedCentralGoogle Scholar
  40. Han T, Kong JA, Kang HG, Kim SJ, Jin GS, Choi H, Brown MT (2011) Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure. Ecotoxicology 20:2056–2068PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hertzberg S, Jensen A (1989) Studies of alginate-immobilized marine microalgae. Bot Mar 32:267–273CrossRefGoogle Scholar
  42. Hooten RL, Carr RS (1998) Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores. Environ Toxicol Chem 17:932–940CrossRefGoogle Scholar
  43. Hsiao S-W, Yen C-H, Lee C-H (2017) Applying dynamic mold temperature control to cosmetic package design. MATEC Web of Conferences 123:00012Google Scholar
  44. IFRA (International Fragrance Association) (2004) Volume of use survey, December 2004Google Scholar
  45. Jang LK (1994) Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng 43:183–185PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jang LK, Nguyen DV, Kolostyak K, Geesey GG (1995a) Addition of copper-sequestering agents to alginate gel to enhance copper recovery from aqueous media. Water Res 29:2525–2529CrossRefGoogle Scholar
  47. Jang LK, Nguyen D, Geesey GG (1995b) Effect of pH on the absorption of Cu(II) by alginate gel. Water Res 29:315–321CrossRefGoogle Scholar
  48. Jang LK, Nguyen D, Geesey GG (1995c) Selectivity of alginate gel for Cu vs. Co. Water Res 29:307–313CrossRefGoogle Scholar
  49. Jianrong X, Qiran T (2009) Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis. J Environ Sci 21:1569–1574CrossRefGoogle Scholar
  50. Jiménez-Pérez MV, Sánchez-Castillo P, Romera O, Fernández- Moreno D, Pérez-Martínez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34:392–398CrossRefGoogle Scholar
  51. Joo DS, Cho MG, Lee JS, Park JH, Kwak JK, Han YH, Bucholz R (2001) New strategy for the cultivation of microalgae using microencapsulation. J Microencapsul 18:567–576PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kang S, Kim S, Park J, Kim HJ, Lee J, Choi G, Choi S, Kim S, Kim SY, Moon HB, Kim S, Kho YL, Choi K (2013) Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers. Sci Total Environ 461-462:241–221CrossRefGoogle Scholar
  53. Kim J-Y, Song J-Y, Lee E-J, Park S-K (2003) Rheological properties and microstructures of carbopol gel network system. Colloid Polym Sci 281:614–623CrossRefGoogle Scholar
  54. Klaine SJ, Lewis MA (1995) Algal and plant toxicity testing. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology. Lewis Publishers, Boca Raton, pp 163–184Google Scholar
  55. Kleinhans D, Knoth W (1976) Axillare granulome (zirkonium). Dermatology 152:161–167CrossRefGoogle Scholar
  56. Konish Y, Denda A, Uchida K, Emi Y, Ura H, Yokose Y, Shiraiwa K, Tsutsumi M (1992) Chronic toxicity carcinogenicity studies of triethanolamine in B6C3F1 mice. Fundam Appl Toxicol 18:25–29CrossRefGoogle Scholar
  57. Kottuparambil S, Lee S, Han T (2013) Single and interactive effects of the antifouling booster herbicides Diuron and Iragol 1051 on photosynthesis in the marine cyanobacterium, Arthrospira maxima. Toxicol Environ Health 5:71–81CrossRefGoogle Scholar
  58. Ku SB, Gutierrez M, Kanai R, Edwards GE, Ku SB (1974) Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants II. Chlorophyll and hill reaction studies. Z Pflanzenphysiol 72:320–337CrossRefGoogle Scholar
  59. Kumar KS, Han Y-S, Choo K-S, Kong J-A, Han T (2009) Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol Environ Health Sci 1:17–23CrossRefGoogle Scholar
  60. Kumar KS, Dahms HU, Lee J-S, Kim HC, Lee WC, Shin KH (2014) Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf 104:51–71PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lee Y, Kang S (2002) A catalogue of the seaweeds in Korea. Cheju National University Press, JejuGoogle Scholar
  62. Lee JA, Sunwoo Y-I, Lee H-J, Park I-H, Chung I-K (1989) The effects of copper on the early stages of Undaria pinnatifida (Harv.) Suringar (Laminariales, Phaeophyta) under temperature-irradiance gradient. The Korean Journal of Phycology 4:41–53Google Scholar
  63. Lee J, Park N, Kho Y, Lee K, Ji K (2017) Phototoxicity and chronic toxicity of methyl paraben and 1,2-hexanediol in Daphnia magna. Ecotoxicology 26:81–89PubMedCrossRefPubMedCentralGoogle Scholar
  64. León R, Garbayo I, Hernández R, Vigara J, Vilchez C (2001) Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzym Microb Technol 29:173–180CrossRefGoogle Scholar
  65. Libralato G, Volpi Ghirardini A, Avezzù F (2010) Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. J Hazard Mater 176:535–539PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lukavsky J (1988) Long-term preservation of algal strains by immobilization. Arch Protistenkd 135:65–68CrossRefGoogle Scholar
  67. Lukavský J, Maršálek B (1997) The evaluation of toxicity by a biosensor with immobilized algae. Algol Stud 85:147–155Google Scholar
  68. Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New YorkGoogle Scholar
  69. Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9:196–201PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mallick N, Rai LC (2002) Physiological responses of non-vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Dordrecht, pp 111–147CrossRefGoogle Scholar
  71. Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969PubMedPubMedCentralCrossRefGoogle Scholar
  72. Moreno-Garrido I, Codd GA, Gadd GM, Lubian LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc Mar 28:107–119CrossRefGoogle Scholar
  73. Moreno-Garrido I, Campana O, Lubián LM, Blasco J (2005) Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51:823–829PubMedCrossRefPubMedCentralGoogle Scholar
  74. Moreno-Garrido I, Lubián LM, Blasco J (2007) Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin). Environ Int 33:481–485PubMedCrossRefPubMedCentralGoogle Scholar
  75. Morita T, Kurashima A, Maegawa M (2003) Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol Res 51:154–160Google Scholar
  76. Mowad CM (2000) Allergic contact dermatitis caused by parabens: 2 case reports and a review. Am J Contact Dermat 11:53–56PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Vet Hum Toxicol 35:445–453PubMedPubMedCentralGoogle Scholar
  78. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815PubMedCrossRefPubMedCentralGoogle Scholar
  79. Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal–bacterial consortium. Chemosphere 63:903–911PubMedCrossRefPubMedCentralGoogle Scholar
  80. Myers HH, Duba S, Gunthorpe L, Allinson G (2006) Assessing the performance of Hormosira banksii (Tuner) Decaisne germination and growth assay using four reference toxicants. Ecotoxicol Environ Saf 64:304–311PubMedCrossRefPubMedCentralGoogle Scholar
  81. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185PubMedCrossRefPubMedCentralGoogle Scholar
  82. Nestle N, Kimmich R (1996) NMR microscopy of heavy metal absorption in calcium alginate beads. Appl Biochem Biotechnol 56:9–17CrossRefGoogle Scholar
  83. Park J, Jin G-S, Hwang MS, Brown MT, Han T (2016) Toxicity tests using the kelp Undaria pinnatifida for heavy metal risk assessment. Toxicol Environ Heal Sci 8:86–95CrossRefGoogle Scholar
  84. Peña-Vázquez E, Pérez-Conde C, Costas E, Moreno-Bondi MC (2010) Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry. Ecotoxicology 19:1059–1065PubMedCrossRefPubMedCentralGoogle Scholar
  85. Perullini M, Durrieu C, Jobbágy M, Bilmes SA (2014) Rhodamine B doped silica encapsulation matrices for the protection of photosynthetic organisms. J Biotechnol 184:94–99PubMedCrossRefPubMedCentralGoogle Scholar
  86. Popa DS, Kiss B, Vlase L, Pop A, Iepure R, Păltinean R, Loghin F (2011) Study of oxidative stress induction after exposure to bisphenol a and methylparaben in rats. Farmacia 59:539–549Google Scholar
  87. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Hattori A (ed) Proc. U.S.-Jpn. Conf., Cultures and Collection of Algae. Jpn. Soc. Plant Physiol., Kyoto, pp 63–75Google Scholar
  88. Rotini A, Manfra L, Canepa S, Tornambè A, Migliore L (2015) Can Artemia hatching assay be a (sensitive) alternative tool to acute toxicity test? Bull Environ Contam Toxicol 95:745–751PubMedCrossRefPubMedCentralGoogle Scholar
  89. Saito Y (1975) Undaria. In: Tokida J, Hirose H (eds) Advance of phycology in Japan. Junk Publishers, The Hague, pp 304–320Google Scholar
  90. Santos MMD, Moreno-Garrido I, Gonçalves F, Soares AM, Ribeiro R (2002) An in situ bioassay for estuarine environments using the microalga Phaeodactylum tricornutum. Environ Toxicol Chem 21:567–574PubMedCrossRefPubMedCentralGoogle Scholar
  91. Santos MMD, Soares AM, Ribeiro R (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 59:164–173CrossRefGoogle Scholar
  92. Santos-Rosa F, Galvan F, Vega JM (1989) Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: a reactor feasibility study. Appl Microbiol Biotechnol 32:285–290CrossRefGoogle Scholar
  93. Seery CR, Gunthorpe L, Ralph PJ (2006) Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays. Environ Pollut 140:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  94. Selivanova ON, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the far-eastern seas of Russia on the basis of molecular-phylogenetic data. Russ J Mar Biol 33:278–289CrossRefGoogle Scholar
  95. Shelley WB, Hurley HJ (1958) The allergto origin of zirconium deodorant granulomas. J Dermatol 70:75–101CrossRefGoogle Scholar
  96. Sinner J, Forrest B, Taylor M (2000) A strategy for managing the Asian kelp Undaria: final report. Cawthron Report No. 578, pp. 578Google Scholar
  97. Soni MG, Taylor SL, Greenberg NA, Burdock GA (2002) Evaluation of the health aspects of methyl paraben: a review of the published literature. Food Chem Toxicol 40:1335–1373PubMedCrossRefPubMedCentralGoogle Scholar
  98. Tamura I, Kagota K, Yasuda Y, Yoneda S, Morita J, Nakada N, Kameda Y, Kimura K, Tatarazako N, Yamamoto H (2012) Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J Appl Toxicol 33:1222–1229PubMedPubMedCentralGoogle Scholar
  99. Tarazona JV, Nuñez O (1987) Acute toxicity of synthetic detergents to snails: effect of sodium lauryl sulfate on Limnaea peregra shells. Bull Environ Contam Toxicol 39:1036–1040PubMedCrossRefPubMedCentralGoogle Scholar
  100. Terasaki M, Makino M, Tatarazako N (2009) Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. J Appl Toxicol 29:242–247PubMedCrossRefPubMedCentralGoogle Scholar
  101. Thakur A, Kumar HD (1999) Nitrate, ammonium and phosphate uptake by the immobilized cells of Dunaliella salina. Environ Contam Toxicol B 62:70–78CrossRefGoogle Scholar
  102. Thepenier C, Gudin C, Thomas D (1985) Immobilization of Porphyridium cruentum in polyurethane foams for the production of polysaccharide. Biomass 7:225–240CrossRefGoogle Scholar
  103. Tripathi U, Ramachandra RS, Ravishankar GA (2002) Biotransformation of phenylpropanoid compounds to vanilla flavor metabolites in cultures of Haematococcus pluvialis. Process Biochem 38:419–426CrossRefGoogle Scholar
  104. Twist H, Edwards AC, Codd GA (1997) A novel in-situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters. Water Res 31:2066–2072CrossRefGoogle Scholar
  105. Van der Plassche EJ, Balk F (1997) Environmental risk assessment of the polycyclic musks AHTN and HHCB according to the EU-TGD. National Institute of Public Health and the Environment, BilthovenGoogle Scholar
  106. Van Dijk A (1997) Acute toxicity of HHCB to Pseudokirchneriella subcapitata. Report to RIFM, RCC Umweltchemie AF Project 380632Google Scholar
  107. VCF (Volatile Compounds in Food): database, Nijssen LM, van Donders CA (1963) In: Nijssen LM, Ingen-Visscher CA van Donders JJH (eds.) VCF (Volatile Compounds in Food): database. Version 11.1.1–Zeist (The Netherlands): TNO Quality of Life, 1963–2009Google Scholar
  108. Verlaque M (2001) Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. Oceanol Acta 24:29–49CrossRefGoogle Scholar
  109. Vinardell MP (2015) The use of non-animal alternatives in the safety evaluations of cosmetics ingredients by the Scientific Committee on Consumer Safety (SCCS). Regul Toxicol Pharmacol 71:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  110. Vita NA, Brohem CA, Canavez ADPM, Oliveira CFS, Kruger O, Lorencini M, Carvalho CM (2018) Parameters for assessing the aquatic environmental impact of cosmetic products. Toxicol Lett 287:70–82PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wang P, Luo L, Ke L, Luan T, Tam NF (2013) Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environ Toxicol Chem 32:678–683Google Scholar
  112. Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD (2015) Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int J Hyg Environ Health 218:212–219PubMedCrossRefPubMedCentralGoogle Scholar
  113. Worth AP, Balls M (2002) Alternative (non-animal) methods for chemicals testing: current status and future prospects-overview. FRAME. Worth AP, Balls M (eds) Alternative (non-animal) methods for chemicals testing: current status and future prospects. A report prepared by ECVAM and the ECVAM Working Group on Chemicals ATLA 30, Suppl pp 1–125Google Scholar
  114. Yamamoto H, Tamura I, Hirata Y, Kato J, Kagota K, Katsuki S, Yamamoto A, Kagami Y, Tatarazako N (2011) Aquatic toxicity and ecological risk assessment of seven parabens. Sci Total Environ 410-411:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zhang L-J, Ying GG, Chen F, Zhao J-L, Wang L, Fang Y-X (2012) Development and application of whole-sediment toxicity test using immobilized freshwater microalgae Pseudokirchneriella subcapitata. Environ Toxicol Chem 31:377–386PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Marine ScienceIncheon National UniversityIncheonRepublic of Korea
  2. 2.Department of Cosmetic Science and ManagementIncheon National UniversityIncheonRepublic of Korea
  3. 3.School of Marine Science & EngineeringPlymouth UniversityPlymouthUK
  4. 4.Ghent University Global CampusIncheonRepublic of Korea
  5. 5.Phycology Research Group and Center for Molecular Phylogenetics and EvolutionGhent UniversityGhentBelgium

Personalised recommendations