Advertisement

Journal of Applied Phycology

, Volume 31, Issue 2, pp 1285–1295 | Cite as

Spore release and germling development on different substrates in the carrageenophyte Sarcothalia crispata from the southwestern Atlantic coast

  • Melanie H. HughesEmail author
  • Karina M. Michetti
  • Patricia I. Leonardi
Article

Abstract

Sarcothalia crispata is a carrageenophytic red alga from South America. The gametophytes produce kappa/iota carrageenan and the tetrasporophytes, lambda carrageenan, each with different properties and uses. The aims of this study were to determine the most effective method for obtaining S. crispata carpospores and tetraspores from southern Argentina, to evaluate the germination process of these spores, and to assess their survival and growth on different substrates. Desiccation, osmotic shock, low temperature, and spontaneous discharge were tested in the laboratory as spore release methods. The settlement and growth of sporelings were assessed on glass, ropes, shells, and gravel. No differences were found among induction methods, obtaining a higher output of tetraspores per frond area than of carpospores. After 3 months, shells and gravel showed the highest densities of carposporelings and tetrasporelings, while the lowest were observed on ropes and glass, respectively. Carposporeling survival varied between 88% on gravel and 13% on ropes; for tetrasporelings, mean survival was 5%. Sporelings attained the largest basal discs and longest erect portions on glass, and the smallest and shortest ones on ropes, those on shells and gravel being of intermediate in size. Based on these results, it can be concluded that carpospores and tetraspores from S. crispata obtained by spontaneous discharge and inoculated on shells and gravel will result in good densities, allowing germlings to develop and grow. This is the first study on reproductive aspects of S. crispata from the southwestern Atlantic coast, presenting valuable information for reliably initiating specific spore cultures. Obtaining this specific raw material separately for the extraction of kappa/iota or lambda carrageenan would lead to a better management of the resource by the carrageenan industry.

Keywords

Sarcothalia crispata Carpospore Tetraspore Spore culture Substrates 

Notes

Funding information

This study is financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) (PIP 112-2015 01-00510) and the Universidad Nacional Sur (PGI 24/B246). MHH is CONICET Fellow. PIL is a Research Member of CONICET.

References

  1. Alveal K, Romo H, Werlinger C (1995) Cultivo de Gracilaria a partir de esporas. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos, 1st edn. Universidad de Concepción, Concepción, pp 599–609Google Scholar
  2. Avila M, Otaíza R, Norambuena R, Nuñez M (1996) Biological basis for the management of ‘Luga negra’ (Sarcothalia crispata Gigartinales, Rhodophyta) in southern Chile. Hydrobiologia 326/327:245–252CrossRefGoogle Scholar
  3. Avila M, Ask E, Rudolph B, Nuñez M, Norambuena R (1999a) Economic feasibility of Sarcothalia (Gigartinales, Rhodophyta) cultivation. Hydrobiologia 398/399:435–442CrossRefGoogle Scholar
  4. Avila M, Candia A, Núñez M, Romo H (1999b) Reproductive biology of Gigartina skottsbergii (Gigartinaceae, Rhodophyta) from Chile. Hydrobiologia 398/399:149–157CrossRefGoogle Scholar
  5. Avila M, Piel MI, Caceres JH, Alveal K (2011) Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. J Appl Phycol 23:529–536CrossRefGoogle Scholar
  6. Azanza RV, Aliaza TT (1999) In vitro carpospore release and germination in Kappaphycus alvarezii (Doty) Doty from Tawi-Tawi, Philippines. Bot Mar 42:281–284CrossRefGoogle Scholar
  7. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  8. Boraso de Zaixso A, Ciancia M, Cerezo AS (1998) The seaweed resources of Argentina. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan International Cooperation Agency, Yokosuka, pp 372–384Google Scholar
  9. Boraso de Zaixso AL, Ciancia M, Cerezo AS, Piriz ML, Casas GN, Eyras MC (2015) Utilización de las macroalgas marinas de la costa argentina y sus hidrocoloides. In: Zaixso HE, Boraso A (eds) La zona costera patagónica argentina, volumen 1: Recursos biológicos bentónicos, 1st edn. EDUPA, Comodoro Rivadavia, pp 3–60 Google Scholar
  10. Bulboa C, Macchiavello J, Véliz K, Oliveira EC (2010) Germination rate and sporelings development of Chondracanthus chamissoi (Rhodophyta, Gigartinales) varies along a latitudinal gradient on the coast of Chile. Aquat Bot 92:137–141CrossRefGoogle Scholar
  11. Buschmann AH, Correa JA, Westermeier R, Paredes MA, Aedo D, Potin P, Aroca G, Beltrán J, Hernández-González MC (2001) Cultivation of Gigartina skottsbergii (Gigartinales, Rhodophyta): recent advances and challenges for the future. J Appl Phycol 13:255–266CrossRefGoogle Scholar
  12. Buschmann AH, Hernández-González MC, Varela D (2008) Seaweed future cultivation in Chile: perspectives and challenges. Int J Environ Pollut 33:432–456CrossRefGoogle Scholar
  13. Buschmann AH, Camus C, Infante J, Neori A, Israel A, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406CrossRefGoogle Scholar
  14. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2419CrossRefGoogle Scholar
  15. Digimizer (2018) Digimizer: Image Analysis Software Version 5.3.3. MedCalc Software bvba, Ostend, Belgium. URL https://www.digimizer.com/
  16. Flores ML, Stortz CA, Rodríguez MC, Cerezo AS (1997) Studies on the skeletal cell wall and cuticle of the cystocarpic stage of the red seaweed Iridaea undulosa Bory. Bot Mar 40:411–419CrossRefGoogle Scholar
  17. Flores ML, Cerezo AS, Stortz CA (2000a) Alkali treatment of the polysaccharides from the cystocarpic stage from Iridaea undulosa. Molecules 5:541–542CrossRefGoogle Scholar
  18. Flores ML, Stortz CA, Cerezo AS (2000b) Studies on the skeletal cell wall of the cystocarpic stage of the red seaweed Iridaea undulosa B. Part I. Fractionation of the cell wall and methylation analysis of the inner core-fibrillar polysaccharides. Int J Biol Macromol 27:21–27CrossRefGoogle Scholar
  19. Garbary DJ, De Wreede RE (1988) Life history phases in natural populations of Gigartinaceae (Rhodophyta): quantification using resorcinol. In: Lobban S, Chapman DJ, Kremer BP (eds) Experimental phycology: a laboratory manual. Cambridge University Press, Cambridge, pp 174–178Google Scholar
  20. Glenn EP, Moore D, Fitzsimmons K, Azevedo C (1996) Spore culture of the edible red seaweed, Gracilaria parvispora (Rhodophyta). Aquaculture 142:59–74CrossRefGoogle Scholar
  21. Gonzalez-Zuñiga M (2004) Efecto de la radiación UVB en el crecimiento de discos, microtalos y plántulas de Sarcothalia crispata (Bory) Leister en condiciones de laboratorio. Thesis, Universidad Austral de Chile, Valdivia, ChileGoogle Scholar
  22. Guzmán-Urióstegui A, Robledo D (1999) Factors affecting sporulation of Gracilaria cornea (Gracilariales, Rhodophyta) carposporophytes from Yucatan, Mexico. Hydrobiologia 398/399:285–290CrossRefGoogle Scholar
  23. Hannach G, Santelices B (1985) Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar Ecol Prog Ser 22:291–303CrossRefGoogle Scholar
  24. Hansen JE (1980) Physiological considerations in the mariculture of red algae. In: Abbott IA, Foster MS, Ekund LF (eds) Pacific seaweed aquaculture. University of California, La Jolla, pp 80–91Google Scholar
  25. Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727CrossRefGoogle Scholar
  26. Hommersand MH, Guiry MD, Fredericq S, Leister GL (1993) New perspectives in the taxonomy of the Gigartinaceae (Gigartinales, Rhodophyta). Hydrobiologia 260/261:105–120CrossRefGoogle Scholar
  27. Hughes MH, Michetti KM, Leonardi PI (2014) Settlement of Gracilaria gracilis carpospores (Gracilariales, Rhodophyta) on natural substrates from the southwestern Atlantic coast (Chubut, Argentina). Bot Mar 57:131–137CrossRefGoogle Scholar
  28. Hughes MH, Prado HJ, Rodríguez MC, Michetti KM, Leonardi PI, Matulewicz MC (2018) Carrageenans from Sarcothalia crispata and Gigartina skottsbergii: structural analysis and interpolyelectrolyte complex formation for drug controlled release. Mar Biotechnol.  https://doi.org/10.1007/s10126-018-9842-4
  29. Infante RE, Candia AP (1988) Cultivation of Gracilaria verrucosa (Hudson) Papenfuss and Iridaea ciliata Kutzing (Rhodophyta, Gigartinaceae), “in vitro”: induced shedding and carpospores colonization on different substrates. Gayana Bot 45:297–304Google Scholar
  30. Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohyd Polym 103:1–11CrossRefGoogle Scholar
  31. Mansilla A, Palacios M, Aguilar S (2004) Efecto de la salinidad en el desarrollo inicial de Sarcothalia crispata (Bory) Leister (Rhodophyta, Gigartinales) bajo condiciones de laboratorio. An Inst Patagon 32:13–233Google Scholar
  32. Mansilla A, Werlinger C, Palacios M, Navarro NP, Cuadra P (2006) Effects of UVB radiation on the initial stages of growth of Gigartina skottsbergii, Sarcothalia crispata and Mazzaella laminarioides (Gigartinales, Rhodophyta). J Appl Phycol 18:451–459CrossRefGoogle Scholar
  33. Mansilla A, Palacios M, Navarro NP, Avila M (2008) Growth and survival performance of the gametophyte of Gigartina skottsbergii (Rhodophyta, Gigartinales) under defined nutrient conditions in laboratory culture. J Appl Phycol 20:889–896CrossRefGoogle Scholar
  34. Matulewicz MC, Cerezo AS (1980) The carrageenan from Iridaea undulosa B.; analysis, fractionation and alkaline treatment. J Sci Food Agric 31:203–213CrossRefGoogle Scholar
  35. Michetti KM, Martín LA, Leonardi PI (2013) Carpospore release and sporeling development in Gracilaria gracilis (Gracilariales, Rhodophyta) from the southwestern Atlantic coast (Chubut, Argentina). J Appl Phycol 25:1917–1924CrossRefGoogle Scholar
  36. Neill K, Nelson W, Hurd C, Falshaw R (2018) Growth and carrageenan composition of two populations of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta). J Appl Phycol 30:2485–2497CrossRefGoogle Scholar
  37. Otaíza RD, Abades SR, Brante AJ (2001) Seasonal changes in abundance and shifts in dominance of life history stages of the carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) in south-central Chile. J Appl Phycol 13:161–171CrossRefGoogle Scholar
  38. Pacheco-Ruiz I, García-Esquivel Z, Aguilar-Rosas L (1989) Spore discharge in the carrageenophyte Gigartina canaliculata Harvey (Rhodophyta, Gigartinales). J Exp Mar Biol Ecol 126:293–299CrossRefGoogle Scholar
  39. Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200CrossRefGoogle Scholar
  40. Prataprao Shere S (1985) Studies on sporulation and propagation in selected agarophytes. PhD Thesis, University of Cochin, Cochin, IndiaGoogle Scholar
  41. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collection of algae. Proceedings of the US Japanese Society of Plant Physiologists Conference, Hakone, pp 63–75Google Scholar
  42. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  43. Romo H, Alveal K (1995) Técnicas para el cultivo experimental, medición del crecimiento y manejo de las poblaciones de Iridaea (Mazaella). In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos, 1st edn. Universidad de Concepción, Concepción, pp 563–576Google Scholar
  44. Romo H, Alveal K, Werlinger C (2001) Growth of the commercial carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in Central Chile. J Appl Phycol 13:229–234CrossRefGoogle Scholar
  45. Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Annu Rev 28:177–276Google Scholar
  46. Santelices B, Martínez EA (1997) Hierarchical analysis of reproductive potential in Mazzaella laminarioides (Gigartinaceae, Rhodophyta). Phycologia 36:195–207CrossRefGoogle Scholar
  47. Santelices B, Correa JA, Aedo D, Flores V, Hormazábal M, Sánchez P (1999) Convergent biological processes in coalescing Rhodophyta. J Phycol 35:1127–1149CrossRefGoogle Scholar
  48. Santelices B, Correa JA, Hormazábal M, Flores V (2003) Contact responses between spores and sporelings of different species, karyological phases and cystocarps of coalescing Rhodophyta. Mar Biol 143:381–392CrossRefGoogle Scholar
  49. Scrosati RA (1991) Presencia de Iridaea crispata (Rhodophyta: Gigartinales) en Chubut y Santa Cruz, Argentina. Bol Soc Argent Bot 27:1–2Google Scholar
  50. Scrosati R, DeWreede RE (1999) Demographic models to simulate the stable ratio between ecologically similar gametophytes and tetrasporophytes in populations of the Gigartinaceae (Rhodophyta). Phycol Res 47:153–157CrossRefGoogle Scholar
  51. Stortz CA, Cerezo AS (1993) The system of carrageenans from cystocarpic and tetrasporic stages from Iridaea undulosa: fractionation with potassium chloride and methylation analysis of the fractions. Carbohydr Res 242:217–227CrossRefGoogle Scholar
  52. Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217CrossRefGoogle Scholar
  53. Werlinger C, Mansilla A, Villarroel A, Palacios M (2008) Effects of photon flux density and agricultural fertilizers on the development of Sarcothalia crispata tetraspores (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. J Appl Phycol 20:757–776CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Departamento de Biología Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations