Advertisement

Full-length transcriptome sequences obtained by a combination of sequencing platforms applied to heat shock proteins and polyunsaturated fatty acids biosynthesis in Pyropia haitanensis

  • Wenlei Wang
  • Jing Chang
  • Hongyan Zheng
  • Dehua Ji
  • Yan Xu
  • Changsheng Chen
  • Chaotian Xie
Article

Abstract

Pyropia haitanensis is a high-yield commercial seaweed in China. Pyropia haitanensis farms often suffer from problems such as severe germplasm degeneration, while the mechanisms underlying resistance to abiotic stresses remain unknown because of lacking genomic information. Although many previous studies focused on using next-generation sequencing (NGS) technologies, the short-read sequences generated by NGS generally prevent the assembly of full-length transcripts, and then limit screening functional genes. In the present study, which was based on hybrid sequencing (NGS and single-molecular real-time sequencing) of the P. haitanensis thallus transcriptome, we obtained high-quality full-length transcripts with a mean length of 2998 bp and an N50 value of 3366 bp. A total of 14,773 unigenes (93.52%) were annotated in at least one database, while approximately 60% of all unigenes were assembled by short Illumina reads. Moreover, we herein suggested that the genes involved in the biosynthesis of polyunsaturated fatty acids and heat shock proteins play an important role in the process of development and resistance to abiotic stresses in P. haitanensis. The present study, together with previously published ones, may facilitate seaweed transcriptome research.

Keywords

Pyropia haitanensis Next-generation sequencing Single-molecule real-time transcript sequencing Polyunsaturated fatty acids Heat shock proteins 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No: 41276177), and Supported by China Agriculture Research System (CARS-50), and the Natural Science Foundation of Fujian, China (Grant Nos. 2014J07006 and 2014J05041). The authors thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

10811_2018_1624_MOESM1_ESM.xlsx (13 kb)
Supplementary file 1 (XLSX 12 kb)
10811_2018_1624_MOESM2_ESM.xlsx (32 kb)
Supplementary file 2 (XLSX 32 kb)
10811_2018_1624_MOESM3_ESM.xlsx (128 kb)
Supplementary file 3 (XLSX 127 kb)

References

  1. Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37CrossRefPubMedCentralGoogle Scholar
  2. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang ZY, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 114:E6361–E6370CrossRefPubMedCentralGoogle Scholar
  3. Buchner J (1999) Hsp90 & Co. -a holding for folding. Trends Biochem Sci 24:136–141CrossRefPubMedCentralGoogle Scholar
  4. Chaisson MJ, Brinza D, Pevzner PA (2009) De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res 19:336–346CrossRefPubMedCentralGoogle Scholar
  5. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M, Landolin JM, Stamatoyannopoulos JA, Hunkapiller MW, Korlach J, Landolin JM (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611CrossRefGoogle Scholar
  6. Chan CX, Blouin NA, Zhuang Y, Zäuner S, Prochnik SE, Lindquist E, Lin S, Benning C, Lohr M, Yarish C, Gantt E, Grossman AR, Lu S, Müller K, Stiller JW, Brawley SH, Gantt E (2012) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol 48:1328–1342CrossRefPubMedCentralGoogle Scholar
  7. Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya CT, Sebra RP, Sebra RP (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187–1198CrossRefPubMedCentralGoogle Scholar
  8. Chen CS, Ji DH, Xie CT, Xu Y, Liang Y, Zhen YJ, Shi XZ, Wang FX, Zhao LM (2008) Preliminary study on selecting the high temperature resistance strains and economic traits of Porphyra haitanensis. Acta Oceanol Sinica 30:100–106 (in Chinese with English abstract)Google Scholar
  9. Chi Z, Liu Y, Frear C, Chen S (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81:1141–1148CrossRefPubMedCentralGoogle Scholar
  10. China fishery bureau, fishery production (2016) China fishery statistical yearbook (in Chinese). Chinese Agriculture ExpressGoogle Scholar
  11. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  12. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, deWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
  13. Filimonova V, Gonçalves F, Marques JC, De Troch M, Gonçalves AM (2016) Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecol Indic 67:657–672CrossRefGoogle Scholar
  14. Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6:527–532CrossRefGoogle Scholar
  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Chen Z (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedCentralGoogle Scholar
  16. Hackl T, Hedrich R, Schultz J, Förster F (2014) Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30:3004–3011CrossRefPubMedCentralGoogle Scholar
  17. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580CrossRefGoogle Scholar
  18. Im S, Lee HN, Jung HS, Yang S, Park EJ, Hwang MS, Jeong WJ, Choi DW (2017) Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar Biotechnol 19:232–245CrossRefPubMedCentralGoogle Scholar
  19. Ji D, Li B, Xu Y, Chen C, Xie C (2015) Cloning and quantitative analysis of five heat shock protein 70 genes from Pyropia haitanensis. J Appl Phycol 27:499–509CrossRefGoogle Scholar
  20. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of sequencing errors. Genome Biol 11:R116CrossRefPubMedCentralGoogle Scholar
  21. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberget SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36CrossRefPubMedCentralGoogle Scholar
  22. Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56CrossRefPubMedCentralGoogle Scholar
  23. Landry CR, Aubin-Horth N (2010) Gene network architecture as a canvas for the interpretation of ecological genomics investigations. Mol Ecol 19:5084–5085CrossRefPubMedCentralGoogle Scholar
  24. Li B, Chen CS, Xu Y, Ji DH, Xie CT (2014) Validation of housekeeping genes as internal controls for studying the gene expression in Pyropia haitanensis (Bangiales, Rhodophyta) by quantitative real-time PCR. Acta Oceanol Sinica 33:152–159CrossRefGoogle Scholar
  25. Li Y, Dai C, Hu C, Liu Z, Kang C (2016a) Global identification of alternative splicing via comparative analysis of SMRT-and Illumina-based RNA-seq in strawberry. Plant J 90:164–176CrossRefGoogle Scholar
  26. Li H, Wang W, Wang Z, Lin X, Zhang F, Yang L (2016b) De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp. J Appl Phycol 28:1649–1656CrossRefGoogle Scholar
  27. Luo Q, Zhu Z, Zhu Z, Yang R, Qian F, Chen H, Yan X (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9:e94354CrossRefPubMedCentralGoogle Scholar
  28. Melo T, Alves E, Azevedo V, Martins AS, Neves B, Domingues P, Calado R, Abreu MH, Domingues MR (2015) Lipidomics as a new approach for the bioprospecting of marine macroalgae-unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res 8:181–191CrossRefGoogle Scholar
  29. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46CrossRefGoogle Scholar
  30. Minoche AE, Dohm JC, Schneider J, Holtgräwe D, Viehöver P, Montfort M, Sörensen TR, Weisshaar B, Himmelbauer H (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol 16:184CrossRefPubMedCentralGoogle Scholar
  31. Mulvaney WJ, Jahangard S, Ingram BA, Turchini GM, Winberg PC (2015) Recovery of omega-3 profiles of cultivated abalone by dietary macroalgae supplementation. J Appl Phycol 27:2163–2171CrossRefGoogle Scholar
  32. Osman H, Suriah AR, Law EC (2001) Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chem 73:55–60CrossRefGoogle Scholar
  33. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98CrossRefGoogle Scholar
  34. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496CrossRefPubMedCentralGoogle Scholar
  35. Pottel L, Lycke M, Boterberg T, Foubert I, Pottel H, Duprez F, Goethals L, Debruyne PR (2014) Omega-3 fatty acids: physiology, biological sources and potential applications in supportive cancer care. Phytochem Rev 13:223–244CrossRefGoogle Scholar
  36. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266CrossRefPubMedCentralGoogle Scholar
  37. Sahoo D, Tang XR, Yarish C (2002) Porphyra - the economic seaweed as a new experimental system. Curr Sci 83:1313–1316Google Scholar
  38. Saito H, Aono H (2014) Characteristics of lipid and fatty acid of marine gastropod Turbo cornutus: high levels of arachidonic and n-3 docosapentaenoic acid. Food Cem 145:135–144CrossRefGoogle Scholar
  39. Santos MA, Colepicolo P, Pupo D, Fujii MT, de Pereira CM, Mesko MF (2017) Antarctic red macroalgae: a source of polyunsaturated fatty acids. J Appl Phycol 29:759–767CrossRefGoogle Scholar
  40. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014CrossRefPubMedCentralGoogle Scholar
  41. Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. BMC Genomics 16:463CrossRefPubMedCentralGoogle Scholar
  42. Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep 7:43751CrossRefPubMedCentralGoogle Scholar
  43. Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977CrossRefPubMedCentralGoogle Scholar
  44. Wang W, Lin Y, Teng F, Ji D, Xu Y, Chen C, Xie C (2018a) Comparative transcriptome analysis between heat-tolerant and sensitive Pyropia haitanensis strains in response to high temperature stress. Algal Res 29:104–112CrossRefGoogle Scholar
  45. Wang L, Mao Y, Kong F, Cao M, Sun P (2015) Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology. BMC Genomics 16:1012CrossRefPubMedCentralGoogle Scholar
  46. Wang W, Teng F, Lin Y, Ji D, Xu Y, Chen C, Xie C (2018b) Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS One 13:e0195842CrossRefPubMedCentralGoogle Scholar
  47. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu ZY, Olson A, Stein JC, Ware D (2016a) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7:11708CrossRefPubMedCentralGoogle Scholar
  48. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefPubMedCentralGoogle Scholar
  49. Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016b) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269CrossRefPubMedCentralGoogle Scholar
  50. Xie C, Li B, Xu Y, Ji D, Chen C (2013) Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genomics 14:107CrossRefPubMedCentralGoogle Scholar
  51. Xu Y, Chen C, Ji D, Hang N, Xie C (2014) Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. J Appl Phycol 26:607–618CrossRefGoogle Scholar
  52. Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu YJ, Ji A, Zhang B, Hu SN, Au KF, Song JY, Au KF (2015a) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961CrossRefPubMedCentralGoogle Scholar
  53. Xu Y, Huang L, Ji D, Chen C, Zheng H, Xie C (2015b) Construction of a dense genetic linkage map and mapping quantitative trait loci for economic traits of a doubled haploid population of Pyropia haitanensis (Bangiales, Rhodophyta). BMC Plant Biol 15:228Google Scholar
  54. Xu K, Xu Y, Ji D, Chen T, Cheng C, Xie C (2017) Cells tile a flat plane by controlling geometries during morphogenesis of Pyropia thalli. Peer J 5:e3314CrossRefPubMedCentralGoogle Scholar
  55. Xu K, Xu Y, Ji D, Xie J, Chen C, Xie C (2016) Proteomic analysis of the economic seaweed Pyropia haitanensis in response to desiccation. Algal Res 19:198–206CrossRefGoogle Scholar
  56. Yan XH, Lv F, Liu CJ, Zheng YF (2010) Selection and characterization of a high-temperature tolerant strain of Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 22:511–516Google Scholar
  57. Yang X, Chockalingam SP, Aluru S (2013) A survey of error-correction methods for next-generation sequencing. Brief Bioinform 14:56–66CrossRefPubMedCentralGoogle Scholar
  58. Yates CM, Calder PC, Rainger GE (2014) Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 141:272–282CrossRefPubMedCentralGoogle Scholar
  59. Young J, Moarefi I, Hartl F (2001) Hsp90: a specialized but essential protein-folding tool. Cell Biol 154:267–274CrossRefGoogle Scholar
  60. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CEW, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRefGoogle Scholar
  61. Zhang H, Li W, Li J, Fu W, Yao J, Duan D (2012) Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae). Mar Genomics 5:53–58CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Wenlei Wang
    • 1
    • 2
  • Jing Chang
    • 1
    • 2
  • Hongyan Zheng
    • 1
    • 2
  • Dehua Ji
    • 1
    • 2
  • Yan Xu
    • 1
    • 2
  • Changsheng Chen
    • 1
    • 2
  • Chaotian Xie
    • 1
    • 2
  1. 1.Fisheries CollegeJimei UniversityXiamenChina
  2. 2.Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of AgricultureXiamenChina

Personalised recommendations