Advertisement

Journal of Applied Phycology

, Volume 31, Issue 2, pp 1297–1302 | Cite as

Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression

  • Bao Le
  • Mawra Nadeem
  • Seung-Hwan Yang
  • Jong-Am Shin
  • Man-Gu Kang
  • Gyuhwa Chung
  • Sangmi SunEmail author
Article

Abstract

Increase in the temperature of seawater due to global warming is one of the major stress factors that has reduced seaweed, in particular Pyropia yezoensis, mariculture worldwide. In this milieu, silicon application has been reported to protect and heal the cells of thallus under stress conditions. The present study investigated the effect of in vitro different temperature and irradiance levels in P. yezoensis gametophytes and the potential mitigating effect of silicic acid (50 μM). The results revealed that the effect of temperature stress on the relative growth rate, the optimum photochemical efficiency of PS II (Fv/Fm), and the net photosynthetic rate (Pn) were minimal in the presence of silicon. The silica content in the thallus increased with increase in temperature, thus upregulating the expression of antioxidant genes. However, the effect of silicon was not characterized in P. yezoensis under irradiance treatments. The results suggest that silicon might effectively improve temperature stress tolerance in P. yezoensis.

Keywords

Rhodophyta Antioxidant enzyme Pyropia yezoensis Silicon Temperature stress 

Notes

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03035600).

References

  1. Cao J, Wang J, Wang S, Xu X (2016) Porphyra species: a mini-review of its pharmacological and nutritional properties. J Med Food 19:111–119CrossRefGoogle Scholar
  2. Chen S-S, Ding H-C, Yan X-H (2016) Isolation and characterization of an improved strain of Porphyra chauhanii (Bangiales, Rhodophyta) with high-temperature resistance. J Appl Phycol 28:3031–3041CrossRefGoogle Scholar
  3. Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91:15–21CrossRefGoogle Scholar
  4. Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072CrossRefGoogle Scholar
  5. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211CrossRefGoogle Scholar
  6. Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 289–300CrossRefGoogle Scholar
  7. Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273CrossRefGoogle Scholar
  8. Golokhvast KS, Seryodkin IV, Chaika VV, Zakharenko AM, Pamirsky IE (2014) Phytoliths in taxonomy of phylogenetic domains of plants. Biomed Res Int 2014:648326CrossRefGoogle Scholar
  9. Ji D, Xu Y, Xiao H, Chen C, Xu K, Xie C (2016) Superoxide dismutase genes in Pyropia haitanensis: molecular cloning, characterization and mRNA expression. Acta Oceanol Sinica 35:101–111CrossRefGoogle Scholar
  10. Kim GH, Moon K-H, Kim J-Y, Shim J, Klochkova TA (2014) A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249–265CrossRefGoogle Scholar
  11. Kong F, Cao M, Sun P, Liu W, Mao Y (2015) Selection of reference genes for gene expression normalization in Pyropia yezoensis using quantitative real-time PCR. J Appl Phycol 27:1003–1010CrossRefGoogle Scholar
  12. Li XC, Xing YZ, Jiang X, Qiao J, Tan HL, Tian Y, Zhou B (2012) Identification and characterization of the catalase gene PyCAT from the red alga Pyropia yezoensis (Bangiales, Rhodophyta). J Phycol 48:664–669CrossRefGoogle Scholar
  13. Markham J, Hagmeier E (1982) Observations on the effects of germanium dioxide on the growth of macro-algae and diatoms. Phycologia 212:125–130CrossRefGoogle Scholar
  14. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  15. Miura A (1985) Genetic analysis of the variant color types of light red, light green and light yellow phenotypes of Porphyra yezoensis (Rhodophyta, Bangiaceae). In: Hara H (ed) Origin and evolution of diversity in plants and communities. Tokyo, Academiia Scientific, pp 270–284Google Scholar
  16. Mizuta H, Yasui H (2012) Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae). J Appl Phycol 24:1177–1182CrossRefGoogle Scholar
  17. Moore LF, Traquair JA (1976) Silicon, a required nutrient for Cladophora glomerata (L) Kütz. (Chlorophyta). Planta 128:179–182CrossRefGoogle Scholar
  18. Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824CrossRefGoogle Scholar
  19. Niu J, Feng J, Xie X, Gao S, Wang G (2016) Involvement of cyclic electron flow in irradiance stress responding and its potential regulation of the mechanisms in Pyropia yezoensis. Chin J Oceanol Limnol 34:730–739CrossRefGoogle Scholar
  20. Notoya M, Miyashita A (1999) Life history, in culture, of the obligate epiphyte Porphyra moriensis (Bangiales, Rhodophyta). Hydrobiologia 398:121–125CrossRefGoogle Scholar
  21. Provasoli L, McLaughlin J, Droop M (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428CrossRefGoogle Scholar
  22. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WE (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474CrossRefGoogle Scholar
  23. Shea R, Chopin T (2007) Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J Appl Phycol 19:27–32CrossRefGoogle Scholar
  24. Sivanesan I, Son MS, Soundararajan P, Jeong BR (2014) Effect of silicon on growth and temperature stress tolerance of Nephrolepis exaltata ‘Corditas’. Kor J Hort Sci Technol 32(2):142–148Google Scholar
  25. Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. BMC Genomics 16(1):463CrossRefGoogle Scholar
  26. Tatewaki M, Mizuno M (1979) Growth inhibition by germanium dioxide in various algae, especially in brown algae. Jap J Phycol 27:205–212Google Scholar
  27. Wang W, Teng F, Lin Y, Ji D, Xu Y, Chen C, Xie C (2018) Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS One 13(4):e0195842CrossRefGoogle Scholar
  28. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196CrossRefGoogle Scholar
  29. Yan X-H, Lv F, Liu C-J, Zheng Y-F (2010) Selection and characterization of a high-temperature tolerant strain of Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 22:511–516CrossRefGoogle Scholar
  30. Zhang B-L, Yan X-H, Huang L-B (2011) Evaluation of an improved strain of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) with high-temperature tolerance. J Appl Phycol 23:841–847CrossRefGoogle Scholar
  31. Zhang T, Li J, Ma F, Lu Q, Shen Z, Zhu J (2014) Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J Appl Phycol 26:859–865CrossRefGoogle Scholar
  32. Zhang X, Yang R, Yi Q, Sun X, Wu X, Wang Y (2010) Molecular cloning and characterization analysis of cytosolic ascorbate peroxidase gene from Porphyra haitanensis. Acta Oceanol Sinica 32:165–174Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyChonnam National UniversityYeosuRepublic of Korea
  2. 2.Department of AquacultureChonnam National UniversityYeosuRepublic of Korea

Personalised recommendations