Journal of Applied Phycology

, Volume 31, Issue 2, pp 1153–1161 | Cite as

Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina

  • Seungjib Jeon
  • Nam Kyu Kang
  • William I. Suh
  • Hyun Gi Koh
  • Bongsoo LeeEmail author
  • Yong Keun ChangEmail author


Development of transgenic strains of microalgae is necessary to obtain microalgal strains that are capable of producing high levels of oils and a variety of bio-products. However, microalgae have a much lower transformation efficiency in comparison to other micro-organisms due to the presence of thick cell walls. Here, a two-pronged approach for optimizing the electroporation parameters combined with the application of secondary metabolites from myxobacteria to weaken the cell wall was used to maximize the transformation efficiency of Nannochloropsis salina (Eustigmatophyceae). When the electroporation parameters were set at 50 pulses of square waves at a field strength of 12,000 V cm−1, a transformation efficiency of up to 53 per 108 cells was achieved for N. salina in the early exponential phase of growth. Next, cultivation of the microalgae using bacterial conditioned F2N medium containing 10% supernatant of the myxobacteria strain DZ2 resulted in a moderate inhibition of the growth rate and distinctive morphological changes. Flow cytometry confirmed an increase in the overall cell size as well as granularity. When the bacterial medium conditioned cells were employed for transformation under optimized electroporation conditions, the transformation efficiency improved 2.71-fold up to 144 per 108 cells. Taken together, a combinatory approach for electroporation using high field strength square wave pulses and conditioning cells with myxobacterial supernatant is a promising method for the efficient genetic transformation of microalgae.


Microalgae Electroporation Multiple pulses Myxobacteria Swollen cell Nannochloropsis Salina 



This work was supported by a grant from the Advanced Biomass R&D Center (ABC) of the Global Frontier Project, funded by the Ministry of Science and ICT (ABC-2010-0029728 and 2011-0031350).

Supplementary material

10811_2018_1599_MOESM1_ESM.docx (94 kb)
ESM 1 (DOCX 94 kb)


  1. Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp mutants for improved production of biofuels. Appl Energ 96:371–377CrossRefGoogle Scholar
  2. Berrios H, Zapata M, Rivas M (2016) A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment. J Appl Phycol 28:201–208CrossRefGoogle Scholar
  3. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefGoogle Scholar
  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  5. Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831CrossRefGoogle Scholar
  6. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82CrossRefGoogle Scholar
  7. Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci 7:505CrossRefGoogle Scholar
  8. Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, Whitworth DE (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158:2742–2752CrossRefGoogle Scholar
  9. Fernandez E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Nat Acad Sci U S A 86:6449–6453CrossRefGoogle Scholar
  10. Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7:159–165CrossRefGoogle Scholar
  11. Garg B, Dogra RC, Sharma PK (1999) High-efficiency transformation of Rhizobium leguminosarum by electroporation. Appl Environ Microbiol 65:2802–2804Google Scholar
  12. Hagen DC, Bretscher AP, Kaiser D (1978) Synergism between morphogenetic mutants of Myxococcus-xanthus. Dev Biol 64:284–296CrossRefGoogle Scholar
  13. Ifuku K, Yan D, Miyahara M, Inoue-Kashino N, Yamamoto YY, Kashino Y (2015) A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis. Photosynth Res 123:203–211CrossRefGoogle Scholar
  14. Jeon S, Jeong B-R, Chang YK (2017a) Chemicals and fuels from microalgae. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Cham, pp 1–21Google Scholar
  15. Jeon S, Lim J-M, Lee H-G, Shin S-E, Kang NK, Park Y-I, Oh H-M, Jeong W-J, B-r J, Chang YK (2017b) Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 10:267CrossRefGoogle Scholar
  16. Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Nat Acad Sci U S A 99:1076–1081CrossRefGoogle Scholar
  17. Kang NK, Choi G-G, Kim EK, Shin S-E, Jeon S, Park MS, Jeong KJ, Jeong B-R, Chang YK, Yang J-W, Lee B (2015a) Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina. Biotechnol Rep 8:10–15Google Scholar
  18. Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, Jeong BR, Chang YK (2015b) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200CrossRefGoogle Scholar
  19. Kiehl TR, Shen D, Khattak SF, Jian Li Z, Sharfstein ST (2011) Observations of cell size dynamics under osmotic stress. Cytometry A 79:560–569CrossRefGoogle Scholar
  20. Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Nat Acad Sci U S A 108:21265–21269CrossRefGoogle Scholar
  21. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178CrossRefGoogle Scholar
  22. Kumar M, Jeon J, Choi J, Kim S-R (2018) Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris. J Appl Phycol 30:1735–1745CrossRefGoogle Scholar
  23. Ladygin VG (2003) The transformation of the unicellular alga Chlamydomonas reinhardtii by electroporation. Mikrobiologiia 72:658–665Google Scholar
  24. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690CrossRefGoogle Scholar
  25. León R, Fernández E (2007) Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv Exp Med Biol 616:1–11CrossRefGoogle Scholar
  26. Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78:812–817CrossRefGoogle Scholar
  27. Mahmood T, Zar T, Naqvi SMS (2008) Multiple pulses improve electroporation efficiency in Agrobacterium tumefaciens. Electron J Biotechnol 11:0CrossRefGoogle Scholar
  28. Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K (2013) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem 77:874–876CrossRefGoogle Scholar
  29. Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781CrossRefGoogle Scholar
  30. Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 99:5407–5418CrossRefGoogle Scholar
  31. Nakayama T, Watanabe S, Mitsui K, Uchida H, Inouye I (1996) The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18SrDNA sequence data. Phycol Res 44:47–55CrossRefGoogle Scholar
  32. Oneill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants - polyethylene-glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738CrossRefGoogle Scholar
  33. Perez J, Moraleda-Munoz A, Marcos-Torres FJ, Munoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18:766–779CrossRefGoogle Scholar
  34. Poliner E, Pulman JA, Zienkiewicz K, Childs K, Benning C, Farre EM (2018) A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J 16:298–309Google Scholar
  35. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686CrossRefGoogle Scholar
  36. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239CrossRefGoogle Scholar
  37. Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156CrossRefGoogle Scholar
  38. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  39. Safi C, Liu DZ, Yap BHJ, Martin GJO, Vaca-Garcia C, Pontalier P-Y (2014) A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. J Appl Phycol 26:2379–2387CrossRefGoogle Scholar
  40. Safi C, Cabas Rodriguez L, Mulder WJ, Engelen-Smit N, Spekking W, van den Broek LAM, Olivieri G, Sijtsma L (2017) Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresour Technol 239:204–210CrossRefGoogle Scholar
  41. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464CrossRefGoogle Scholar
  42. Shilo M (1970) Lysis of blue-green algae by myxobacter. J Bacteriol 104:453–461Google Scholar
  43. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810CrossRefGoogle Scholar
  44. Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229CrossRefGoogle Scholar
  45. Sukenik A, Beardall J, Kromkamp JC, Kopecky J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308CrossRefGoogle Scholar
  46. Suresh A, Kim YC (2013) Translocation of cell penetrating peptides on Chlamydomonas reinhardtii. Biotechnol Bioeng 110:2795–2801CrossRefGoogle Scholar
  47. Wang H, Hill RT, Zheng T, Hu X, Wang B (2016) Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol 36:341–352CrossRefGoogle Scholar
  48. Xue J, Wang L, Zhang L, Balamurugan S, Li DW, Zeng H, Yang WD, Liu JS, Li HY (2016) The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Factories 15:120CrossRefGoogle Scholar
  49. Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115:691–694CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Advanced Biomass R&D CenterDaejeonRepublic of Korea
  2. 2.Department of Chemical and Biomolecular EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations