Advertisement

The narrow window of energy application for oil extraction by arc discharge

  • Alexis Guionet
  • Keisuke Oura
  • Hidenori Akiyama
  • Hamid Hosano
Article

Abstract

Oil production by microalgae is investigated as a possible solution to sustain the petroleum shortage. Some microalgae such as Botryococcus braunii have the advantage of being able to produce a high amount of hydrocarbon without requiring arable lands to grow on. Also, hydrocarbons extracted from B. braunii are suitable for the cosmetic industry, as they are long-chain hydrocarbons similar to squalene. As such, B. braunii oil might generate a high profit. However, harvesting hydrocarbon from microalgae cultures is difficult. Here we show an innovative way of collecting hydrocarbon from algae culture using high voltage electric discharges (HVED). Botryococcus braunii form a matrix full of hydrocarbons allowing many cells to stick together as microcolonies. When the energy applied is too high, hydrocarbons are destroyed; and when the energy is to low, algae culture stays unchanged. But when energy applied is just sufficient (near 625 J mL−1), cells leave colonies and sink to the bottom of the samples, while hydrocarbons remain unaffected and float to the surface of the samples. Such a phenomenon allows us to harvest the matrices of colonies which are empty of cells, suitable as a biomass for biofuel production.

Keywords

Botryococcus braunii Hydrocarbons Biofuel Matrix Extraction 

Notes

Acknowledgments

We thank the Laboratory of Biological and Mechanical Engineering, The University of Tokyo, for providing CHU13 modified medium.

Funding information

This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (17K06163).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. Akiyama H (2000) Streamer discharges in liquids and their applications. IEEE Trans Dielectr Electr Insul 7:646–653CrossRefGoogle Scholar
  2. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefPubMedGoogle Scholar
  3. Bell S (2014) Understanding the chemical gymnastics of enzyme-catalyzed 1’-1 and 1’-3 triterpene linkages. PhD Thesis, University of KentuckyGoogle Scholar
  4. Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66CrossRefPubMedGoogle Scholar
  5. Blackburn KB (1936) A reinvestigation of the alga Botryococcus braunii Kützing. Trans R Soc Edinb 58:841–854Google Scholar
  6. Boussetta N, Lesaint O, Vorobiev E (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg Technol 19:124–132CrossRefGoogle Scholar
  7. Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour Technol 101:2359–2366CrossRefPubMedGoogle Scholar
  8. Fox CB (2009) Squalene emulsions for parenteral vaccine and drug delivery. Molecules 14:3286–3312CrossRefPubMedGoogle Scholar
  9. Gouveia L, Oliveira AC (2008) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274CrossRefPubMedGoogle Scholar
  10. Grémy-Gros C, Lanoisellé J-L, Vorobiev E (2009) Application of high-voltage electrical discharges for the aqueous extraction from oilseeds and other plants. In: Vorobriev E, Lebkova N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 217–235CrossRefGoogle Scholar
  11. Grung M, Metzger P, Berkaloff C, Liaaen-Jensen S (1994) Studies on the formation and localization of primary and secondary carotenoids in the green alga Botryococcus braunii, including the regreening process. Comp Biochem Physiol B 107:265–272CrossRefGoogle Scholar
  12. Guionet A, Hosseini B, Teissié J, Akiyama H, Hosseini H (2017) A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels 10:39CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205CrossRefPubMedGoogle Scholar
  14. Hoffer P, Sunka P, Lukes P (2009) Investigation of cavitations dynamics induced by tandem shock waves in water. In: IEEE International Conference on Plasma Science - abstracts, 2009. ICOPS 2009. pp 1–1Google Scholar
  15. Hoffer P, Sugiyama Y, Hosseini H, Akaiyama H, Lukes P, Akiyama M (2016) Characteristics of meter-scale surface discharge propagating along water surface at atmospheric pressure. J Phys D 49:415202CrossRefGoogle Scholar
  16. Hoffer P, Lukes P, Akiyama H, Hosseini H (2017) Spatiotemporal dynamics of underwater conical shock wave focusing. Shock Waves 27:685–690CrossRefGoogle Scholar
  17. Hou L, Park H, Okada S, Ohama T (2014) Release of single cells from the colonial oil-producing alga Botryococcus braunii by chemical treatments. Protoplasma 251:191–199CrossRefPubMedGoogle Scholar
  18. Huang Z, Poulter CD (1989) Stereochemical studies of botryococcene biosynthesis: analogies between 1′-1 and 1′-3 condensations in the isoprenoid pathway. J Am Chem Soc 111:2713–2715CrossRefGoogle Scholar
  19. Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10:e0120446CrossRefPubMedPubMedCentralGoogle Scholar
  20. Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051CrossRefGoogle Scholar
  21. Laummonerie C, Mutterer J (2004) RGB_Profiler. https://imagej.nih.gov/ij/plugins/rgb-profiler.html
  22. Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRefGoogle Scholar
  23. Moutel B (2016) Etude de l’interet pharmaceutique et d’une production industrielle des lipides issus de la microalgue Botryococcus braunii. Thesis, Universite de NantesGoogle Scholar
  24. Naugolnykh KA, Roii NA, OH FTDW-P (1974) Electrical discharges in water. A hydrodynamic description. Defense Technical Information CenterGoogle Scholar
  25. Okada S, Devarenne TP, Murakami M, Abe H, Chappell J (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 422:110–118CrossRefPubMedGoogle Scholar
  26. Oshita D, Hosseini SHR, Miyamoto Y, Mwatari K, Akiyama H (2013) Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges. IEEE Trans Dielectr Electr Insul 20:1273–1278CrossRefGoogle Scholar
  27. Reddy LH, Couvreur P (2009) Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426CrossRefPubMedGoogle Scholar
  28. Sakai K, Quick TW (1988) Moisturizing skin preparation. US Patent 4760096AGoogle Scholar
  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  30. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351CrossRefGoogle Scholar
  31. Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and crude oils. Org Geochem 33:99–109CrossRefGoogle Scholar
  32. Sun B, Sato M, Harano A, Clements JS (1998) Non-uniform pulse discharge-induced radical production in distilled water. J Electrost 43:115–126CrossRefGoogle Scholar
  33. Sunka P, Babický V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M (1999) Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 8:258–265CrossRefGoogle Scholar
  34. Tonegawa I, Okada S, Murakami M, Yamaguchi K (1998) Pigment composition of the green microalga Botryococcus braunii Kawaguchi-1. Fish Sci 64:305–308CrossRefGoogle Scholar
  35. Touya G (2005) Contribution à l’étude expérimentale des décharges électriques dans l’eau et des ondes de pression associées. Réalisation d’un prototype industriel 100 kJ pour le traitement de déchets par puissances électriques pulsées. Thesis, Université de PauGoogle Scholar
  36. Touya G, Reess T, Pécastaing L, Gibert A, Domens P (2006) Development of subsonic electrical discharges in water and measurements of the associated pressure waves. J Phys Appl Phys 39:5236–5244CrossRefGoogle Scholar
  37. Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274CrossRefGoogle Scholar
  38. Vorobiev E, Lebovka N (eds) (2009) Electrotechnologies for extraction from food plants and biomaterials. Springer, New YorkGoogle Scholar
  39. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Bioelectrics Department, Institute of Pulsed Power ScienceKumamoto UniversityKumamotoJapan
  2. 2.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations