Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 191–199 | Cite as

Improving the lipid content of Nannochloropsis oculata by a mutation-selection program using UV radiation and quizalofop

  • Jesús David Moha-León
  • Ignacio Alejandro Pérez-LegaspiEmail author
  • Luis Alfredo Ortega-Clemente
  • Isidoro Rubio-Franchini
  • Elvira Ríos-Leal
Article

Abstract

Microalgal biomass with a high content of lipids and fatty acids is generally obtained by culture under stress conditions, limiting its growth and increasing production costs. However, it is possible to obtain strains with higher content of some of the desired biochemical component through genetic improvement strategies. Our objective was to increase the lipid content through a mutation-selection procedure in the microalga Nannochloropsis oculata. This procedure involved the ultraviolet radiation exposure of microalgae at different times at different densities and selecting surviving colonies. Subsequently, they were exposed to the herbicide quizalofop-p-ethyl, selecting the colonies with lower survival. An 85% mortality in the UV-exposed microalgae was recorded at 120 min for 1 × 105 cells mL−1. Two strains surviving quizalofop-p-ethyl were obtained, with only one strain surviving in standard culture conditions. The comparison of the new and original strains shows that the growth rate of the new strain of N. oculata (S3) is greater than that of the original strain, and it also had a higher content of total lipids and some fatty acids such as (a) arachidonic acid (up to five times higher than original); (b) oleic and heptadecaenoic acids (more than double than the original strain); (c) elaidic, tridecanoic, and palmitic acids (slightly higher than the original strain). There were significant differences in composition profile (carbohydrates, proteins) in comparison with the original strain. In conclusion, the mutation-selection procedure for obtaining new strains with higher lipid content is suitable for the freshwater microalga N. oculata. It could be considered as a strategy of genetic improvement with potential for aquaculture, food, pharmaceuticals, and biodiesel.

Keywords

Microalga Eustigmatophyceae Random mutagenesis Fatty acids Lipids 

Notes

Acknowledgements

This project received support from Tecnológico Nacional de México (TNM) through the project 5508.15-P, respectively. Especial thanks to Enoe Erendira Rocha Miller for valuable comments and support during biochemical analysis and to Dra. Verónica Valadez Rocha for the improvement of the language of the manuscript.

References

  1. Arredondo BO, Cordero B, Voltolina D (2007) Determinación de proteínas por métodos espectrofotométricos. In: Arredondo BO, Voltolina D (eds) Métodos y Herramientas Analíticas en la evaluación de la Biomasa Microalgal, Centro de Investigaciones Biológicas del Noroeste SC, La Paz BC Sur, México, pp 31–39Google Scholar
  2. Assaf Sukenik YCTB (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  3. Barsanti L, Gualtieri P (2006) Algae. Anatomy, biochemistry and biotechnology. CRC, Taylor & Francis, Boca Raton, Florida, USAGoogle Scholar
  4. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493CrossRefGoogle Scholar
  5. Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329CrossRefGoogle Scholar
  6. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  7. Bougaran G, Rouxel C, Dubois N, Kass R, Grouas S, Lukomska E, Le Coz J, Cadoret J (2012) Enhancement of neutral lipid productivity in the microalgae Isochrysis affinis galbana (T-Iso) by mutation-selection procedure. Biotechnol Bioeng 109:2737–2745CrossRefGoogle Scholar
  8. Chatuverdi R, Rao S, Amin M, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustimagtophyceae) with high eicosapentanoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J Appl Phycol 16:135–144CrossRefGoogle Scholar
  9. Chatuverdi R, Fujita Y (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulphonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54:208–219CrossRefGoogle Scholar
  10. Cortez R, Guevara M, Bauza R, Freites L, Brito D, Rosales N, Lodeiros C (2015) Incremento del contenido de lípidos y de ácidos grasos poliinsaturados de una cepa de Tetraselmis tetrathele a través de mutación selección. Interciencia 40(3):204–209Google Scholar
  11. Del Ángel J, Carreón L, Arjona MO (2007) Extracción y cuantificación de lípidos. In: Arredondo BO, Voltolina D (eds) Métodos y Herramientas Analíticas en la evaluación de la Biomasa Microalgal, Centro de Investigaciones Biológicas del Noroeste SC. La Paz BC Sur, Mexico, pp 47–57Google Scholar
  12. Doan Y, Obbard J (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1:17–21CrossRefGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  14. Ertola R, Yantorno O, Mignone C (1994) Microbiología industrial. Secretaría General de la O.E.A. Programa Regional de Desarrollo Científico y Tecnológico. Washington, DC, pp 103Google Scholar
  15. Feng J, Cheng J, Cheng R, Zhang C, Zhou J, Cen K (2015) Screening the diatom Nitzschia sp. re-mutated by 137Cs-γ irradiation and optimizing growth conditions to increase lipid productivity. J Appl Phycol 27:661–672CrossRefGoogle Scholar
  16. Gómez P, González M (2001) Genetic polymorphism in eight Chilean strain of the carotenogenic microalgae Dunaliella salina Teodoresco (Chlorophyta). Biol Res 3:423–430Google Scholar
  17. Gómez P, Inostroza I, Pizarro M, Pérez J (2013) From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalgae Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants 5:026CrossRefGoogle Scholar
  18. Griffiths A, Gelbart W, Millar J, Lewoting R (2000) Genética Moderna. McGraw-Hill Interamericana. Madrid, pp 676Google Scholar
  19. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732CrossRefGoogle Scholar
  20. Hemaiswarya S, Raja R, Ravi KR, Ganesan V, Anabazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746CrossRefGoogle Scholar
  21. Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119CrossRefGoogle Scholar
  22. Ishika T, Bahri PA, Laird DW, Moheimani NR (2018) The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J Appl Phycol 30:1453–1464CrossRefGoogle Scholar
  23. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194CrossRefGoogle Scholar
  24. Kagan ML, Matulka RA (2015) Safety assessment of the microalgae Nannochloropsis oculata. Toxicol Rep 2:617–623CrossRefGoogle Scholar
  25. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269CrossRefGoogle Scholar
  26. Kruger NJ (2002) The Bradford method for protein quantification. In: Walker JM (ed) The Protein Protocols. Humana Press, Inc. 15–21Google Scholar
  27. León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52CrossRefGoogle Scholar
  28. Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:139l–1396lGoogle Scholar
  29. Liu S, Zhao Y, Liu L, Ao X, Ma L, Wu M, Ma F (2015) Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Appl Biochem Biotechnol 175:3507–3518CrossRefGoogle Scholar
  30. Lukes M, Giordano M, Prášil O (2017) The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae). J Appl Phycol 29:1791–1799CrossRefGoogle Scholar
  31. Madigan TM, Martinko JM, Parker J (2004) Brock biology of microorganisms. 11th edn. Prentice Hall, NJ, pp 992Google Scholar
  32. Meireles L, Güedes A, Malcata F (2003) Increase of the yields of eicosapentaenoic and docosahexaenic acids by the microalgae Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:50–55Google Scholar
  33. Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284Google Scholar
  34. Mühlroth A, Li K, Rokke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697CrossRefGoogle Scholar
  35. Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534CrossRefGoogle Scholar
  36. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the market place. Biomol Eng 20:459–466CrossRefGoogle Scholar
  37. Pavón-Suriano SG, Ortega-Clemente LA, Curiel-Ramírez S, Jiménez-García MI, Pérez-Legaspi IA, Robledo-Narváez PN (2017) Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates. Environ Sci Pollut Res:1–9Google Scholar
  38. Pérez-Legaspi IA, García-Villar AM, Garatachia-Vargas M, Hernández-Vergara MP, Pérez-Rostro CI, Ortega-Clemente LA (2015) Influencia de la temperatura y tipo de alimento en la historia de vida de Ceriodaphnia cornuta SARS 1885 (Crustacea: Cladocera). Revista Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 64:11–18Google Scholar
  39. Pérez-Legaspi IA, Rico-Martínez R (1998) Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia 387/388:341–348CrossRefGoogle Scholar
  40. Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613CrossRefGoogle Scholar
  41. Rico-Martínez R, Arzate-Cárdenas MA, Robles-Vargas D, Pérez-Legaspi IA, Alvarado-Flores J, Santos-Medrano GE (2016) Chapter 4: rotifers as models in toxicity screening of chemicals and environmental samples. In: Larramendy M, Soloneski S (eds) Invertebrates - experimental models in toxicity screening. InTech, Rijeka, pp 57–99Google Scholar
  42. Sánchez H, Morales J, Vargas J, Oliveros R (2008) Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecol Aplic 7:149–158CrossRefGoogle Scholar
  43. Shaish A, Ben-Amotz A, Avron M (1991) Production and selection of high β-carotene mutants of Dunaliella bardawil (Chlorophyta). J Phycol 27:652–656CrossRefGoogle Scholar
  44. Sorokin C (1973) Dry weight, packed volume and optical density. In: Stein JR (ed) Handbook of Phycological Methods, Culture Methods and Growth Measurement. Cambridge University Press, Cambridge, pp 321–343Google Scholar
  45. Srinivas R, Ochs C (2012) Effect of UV-A irradiance on lipid accumulation in Nannochloropsis oculata. Photochem Photobiol 88:684–689CrossRefGoogle Scholar
  46. Statsoft, Inc. (2004). STATISTICA (data analysis software system), version 7. www.statsoft.com
  47. Stein J (1979) Handbook of phycological methods, culture methods and growth measurement. Cambridge University Press, New York, p 448Google Scholar
  48. Yong C, Defa L, Wenqing L, Jianjun X, Bodi H, Yashan H (2003) Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnol Lett 25:527–529CrossRefGoogle Scholar
  49. Zavřel T, Szabó M, Tamburic B, Evenhuis C, Kuzhiumparambil U, Literáková P, Larkum AWD, Raven JA, Červený J, Ralph PJ (2018) Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. J Photochem Photobiol B 181:31–43CrossRefGoogle Scholar
  50. Zayadan BK, Purton S, Sadvakasova AK, Userbaeva AA, Bolatkhan K (2014) Isolation, mutagenesis, and optimization of cultivation conditions of microalgal strains for biodiesel production. Russ J Plant Physiol 61:124–130CrossRefGoogle Scholar
  51. Zhang D, Lee Y, Ng M, Phang S (1997) Composition and accumulation of secondary carotenoids in Chlorococcum sp. J Appl Phycol 9:147–155CrossRefGoogle Scholar
  52. Zou N, Zhang C, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133CrossRefGoogle Scholar
  53. Zhang Q, Chang C, Bai J, Fang S, Zhuang X, Yuan Z (2018) Mutants of Scenedesmus sp. for purifying highly concentrated cellulosic ethanol wastewater and producing biomass simultaneously. J Appl Phycol 30:969–978CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Tecnológico Nacional de México, División de Ingeniería en PesqueríasInstituto Tecnológico Superior de CentlaTabascoMexico
  2. 2.Tecnológico Nacional de México, División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de Boca del RíoBoca del RíoMexico
  3. 3.Laboratorio Estatal de Salud del Estado de AguascalientesAguascalientesMexico
  4. 4.Departamento de Biotecnología y Bioingeniería/Central Analítica, CINVESTAV- ZacatencoInstituto Politécnico NacionalCiudad de MexicoMexico

Personalised recommendations