Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 211–221 | Cite as

Detection of glycidic receptors in microalgae using glycodendrons as probes: a new tool for studies on cell surface interactions

  • Cíntia de Almeida Gonçalves
  • Rute Cunha Figueiredo
  • Alessandra Giani
  • Daniel Collado
  • Ezequiel Pérez-Inestrosa
  • Javier Rojo
  • Cleber Cunha FigueredoEmail author
Article

Abstract

Cell recognition, adhesion, and internalization are involved in infectious, reproductive, and inflammatory processes and are generally mediated by interactions between molecules located in the cell membrane and the extracellular matrix. These processes can decrease proliferation rates and they are well known for bacteria, fungi, and animals, but there is a lack of knowledge regarding autotrophic cells. Carbohydrates and proteins (e.g., lectins) are important molecules for cell interactions and information about these molecules is essential to better understand many biological phenomena in uni- or multicellular organisms. Most studies focus on the identification of the carbohydrates present on the cell surface by using labeled lectins. Alternatively, here we present a pioneer research performed by using three different labeled carbohydrates in a multivalent presentation (glycodendrons) to detect the presence of carbohydrate receptors (e.g., lectins) on cell surfaces of 12 algal species. The goal of this study was to detect some specificity in these molecular interactions, but in a reverse way in comparison to that commonly described in the literature. We tested trivalent molecules containing residuals of D-mannose, L-fucose, or N-acetyl-galactosamine to identify their bindings with the corresponding lectins expressed on cell surfaces. We envisage that our new approach could be an alternative tool for taxonomic and physiological studies on microalgae or even on other groups of organisms. Based on our results, the receptors found in the cell surface of the algal species tend to differ in composition, quantity, and distribution. The differences were mainly species-specific, since no patterns were identified at higher taxonomic level. Moreover, like lectins, labeled carbohydrates were proved to be a reliable tool for the study of cell surface composition.

Keywords

Cell interaction Lectins Carbohydrates Algae Fluorescent probes Cell recognition 

Notes

Acknowledgements

C.C.F. and R.C.F. thank Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for financial support. We also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a Grant to C. Almeida. R.C.F thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-CsF) and Fundación Carolina for financial support. J.R. thanks Ministerio de Economía y Competitividad (MINECO) of Spain (project CTQ2014-52328-P) co-financed by European Regional Development Funds (ERDF) for financial support.

References

  1. Aguilera A, González-Gil S (2001) Lectin analysis of surface saccharides during the cell cycle in four dinoflagellate species. J Exp Mar Biol Ecol 256:149–166PubMedCrossRefGoogle Scholar
  2. Brandley GK, Schnaar R (1986) Cell surface carbohydrate in cell recognition and response. J Leukoc Biol 40:97–111PubMedCrossRefGoogle Scholar
  3. Carmichael WW, Bent PE (1981) Hemagglutination method for detection of freshwater cyanobacteria (blue-green algae) toxins. Appl Environ Microbiol 41:1383–1388PubMedPubMedCentralGoogle Scholar
  4. Cho ES, Choi BD, Cho YC, Kim TJ, Kim HG (2001) Discrimination of three highly toxic Alexandrium tamarense (Dinophyceae) isolates using FITC-conjugated lectin probes. J Plankton Res 23:89–96CrossRefGoogle Scholar
  5. Clarke AE, Wilson IA (eds) (1988) Carbohydrate-protein interaction. Curr Top Microbiol Immunol, vol. 139. Springer, BerlinGoogle Scholar
  6. Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6:742–748PubMedCrossRefGoogle Scholar
  7. Costas E, Aguilera A, Gonzalez-Gil S, López-Rodas V (1993) Contact inhibition: also a control for cell proliferation in unicellular algae? Biol Bull 184:1–5PubMedCrossRefGoogle Scholar
  8. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68PubMedCrossRefGoogle Scholar
  9. East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572:364–386PubMedCrossRefGoogle Scholar
  10. Espinosa PE, Perrigault M, Ward EJ, Shumway ES, Allam B (2010) Microalgal cell surface carbohydrate as recognition sites for particle sorting in suspension-feeding bivalves. Biol Bull 218:75–86PubMedCrossRefGoogle Scholar
  11. Esquenazi D, de Souza W, Alviano CS, Rozental S (2003) The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immunol Med Microbiol 35:113–123PubMedCrossRefGoogle Scholar
  12. Geijtenbeek TB, Kwon DS, Torensma R, Van Vliet SJ, Van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littam DR, Figdor CG, Van Kook Y (2000) DC-SIGN, a dendritic cell-specific HIV-1 binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRefGoogle Scholar
  13. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517PubMedCrossRefGoogle Scholar
  14. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorrophyllide c. J Phycol 8:10–14Google Scholar
  15. Hori K, Ogata T, Kamiya H, Mimuro M (1996) Lectin-like compounds and lectin receptors in marine microalgae: hemagglutination and reactivity with purified lectins. J Phycol 32:783–790CrossRefGoogle Scholar
  16. Imam SH, Bard RF, Tosteson TR (1984) Specificity of marine microbial surface interactions. Appl Environ Microbiol 48:833–839PubMedPubMedCentralGoogle Scholar
  17. Kane RS (2010) Thermodynamics of multivalent interactions: influence of the linker. Langmuir 26:8636–8640PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kang S, Suresh A, Kim YC (2017) A highly efficient cell penetrating peptide pVEC-mediated protein delivery system into microalgae. Algal Res 24:360–367CrossRefGoogle Scholar
  19. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B 365:729–748CrossRefGoogle Scholar
  20. Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT, Dittmann E (2006) A Mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa. Mol Microbiol 59:893–906PubMedCrossRefGoogle Scholar
  21. Khowala S, Verma D, Banik SP (2008) Biomolecules: introduction, structure and function/carbohydrates. Drug Dev Biotechnol Indian Inst Chem Biol :2–93Google Scholar
  22. Kikkeri R, Kamena F, Gupta T, Hossain LH, Boonyarattanakalin S, Gorodyska G, Beurer E, Coullerez G, Textor M, Seeberger PH (2010) Ru(II) glycodendrimers as probes to study lectin-carbohydrate interactions and electrochemically measure monosaccharide and oligosaccharide concentrations. Langmuir 26:1520–1523PubMedCrossRefGoogle Scholar
  23. Kim GH, Yoon M, west JA, Klochkova TA, Kim SH (2007) Possible surface carbohydrates involved in signaling during conjugation process in Zygnema cruciatum monitored with fluorescein isothiocyanate-lectins (Zygnemataceae, Chlorophyta). Phycol Res 55:135–142CrossRefGoogle Scholar
  24. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5:195–208PubMedCrossRefGoogle Scholar
  25. Knox JP (1992) Molecular probes of the plant cell surface. Protoplasma 167:1–9CrossRefGoogle Scholar
  26. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Eng 40:2004–2021CrossRefGoogle Scholar
  27. Kosaka T, Heizmann CW (1989) Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res 483:158–163PubMedCrossRefGoogle Scholar
  28. Kremp A, Anderson DM (2004) Lectin binding patterns of Scrippsiella lachrymosa (Dinophyceae) in relation to cyst formation and nutrient conditions. J Exp Mar Biol Ecol 307:165–181CrossRefGoogle Scholar
  29. Kresse H, Schönherr E (2001) Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 189:266–274PubMedCrossRefGoogle Scholar
  30. Kushchayev SV, Sankar T, Eggink LL, Kushchayeva YS, Wiener PC, Hoober JK, Eschbacher J, Liu R, Shi FD, Abdelwahab MG, Scheck AC, Preul MC (2012) Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain. Cancer Manag Res 4:309–323PubMedPubMedCentralGoogle Scholar
  31. Lasky LA (1991) Lectin cell adhesion molecules (LEC-CAMs): a new family of cell adhesion proteins involved with inflammation. J Cell Biochem 45:139–146PubMedCrossRefGoogle Scholar
  32. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327CrossRefGoogle Scholar
  33. Li H, Wie L, Fang P, Yang P (2014) Recent advances in the fabrication and detection of lectin microarrays and their application in glycobiology analysis. Anal Methods 6:2003–2014CrossRefGoogle Scholar
  34. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794CrossRefGoogle Scholar
  35. Martin-Cereceda M, Williams R, Guinea A, Novarino G (2007) An investigation of the fine structure, cell surface carbohydrates, and appeal of the diatom Extubocellulus sp. as prey for small flagellates. Protoplasma 232:69–78PubMedCrossRefGoogle Scholar
  36. McClatchey AI, Yap AS (2012) Contact inhibition (of proliferation) redux. Curr Opin Cell Biol 24:685–694PubMedCrossRefGoogle Scholar
  37. Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791PubMedCrossRefGoogle Scholar
  38. Ofek I, Beachey EH (1978) Mannose binding and epithelial cell adherence of Escherichia coli. Infect Immun 22:247–254PubMedPubMedCentralGoogle Scholar
  39. Pannof JM, Priem B, Morvan H, Joset F (1988) Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC6803 and 6714. Arch Microbiol 150:558–563CrossRefGoogle Scholar
  40. Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans - an overview. Semin Cell Dev Biol 12:65–67PubMedCrossRefGoogle Scholar
  41. Praseptiangga D, Hirayama M, Hori K (2012) Purification, characterization, and cDNA cloning of a novel lectin from the green alga, Codium barbatum. Biosci Biotechnol Biochem 76:805–811PubMedCrossRefGoogle Scholar
  42. Ramoino P (1997) Lectin-binding glycoconjugates in Paramecium primaurelia: changes with cellular age and starvation. Histochem Cell Biol 107:321–329PubMedCrossRefGoogle Scholar
  43. Ribeiro-Viana R, García-Vallejo JJ, Collado D, Pérez-Inestrosa E, Bloem K, Van Kooyk Y, Rojo J (2012) BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells. Biomacromolecules 13:3209–3219PubMedCrossRefGoogle Scholar
  44. Roberts EC, Zubkov MV, Martin-Cereceda M, Novarino G, Wootton EC (2006) Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiol Lett 265:202–207PubMedCrossRefGoogle Scholar
  45. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRefGoogle Scholar
  46. Roy R, Shiao TC, Rittenhouse-Olson K (2013) Glycodendrimers: versatile tools for nanotechnology. Braz J Pharm Sci 49:85–108CrossRefGoogle Scholar
  47. Saifuddin M, Hart ML, Gewurz H, Zhang Y, Spear GT (2000) Interaction of mannose-binding lectin with primary isolates of human immunodeficiency virus type 1. J Gen Virol 81:949–955PubMedCrossRefGoogle Scholar
  48. Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A (2010) Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol 5:301–312PubMedCrossRefGoogle Scholar
  49. Schwartz W (1973) Lynn Margulis, origin of eukariotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells of the Precambrian Earth. J Basic Microbiol 13:186Google Scholar
  50. Sengbusch PV, Müller U (1983) Distribution of glyconconjugates at algal cell surfaces as monitored by FITC-conjugated lectins. Studies on selected species from Cyanophyta, Pyrrophyta, Raphidophyta, Euglenophyta, Chromophyta and Chlorophyta. Protoplasma 114:103–113CrossRefGoogle Scholar
  51. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62RPubMedCrossRefGoogle Scholar
  52. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 125:6140–6148PubMedCrossRefGoogle Scholar
  53. Spear GT, Zariffard MR, Xin J, Saifuddin M (2003) Inhibition of DC-SIGN-mediated trans infection of T-cells by mannose-binding lectin. Immunology 110:80–85PubMedPubMedCentralCrossRefGoogle Scholar
  54. Tien CJ, Sigee DC, White KN (2005) Characterization of surface sugars on algal cells with fluorescein isothiocyanate-conjugated lectins. Protoplasma 225:225–233PubMedCrossRefGoogle Scholar
  55. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Organomet Chem 67:3057–3064CrossRefGoogle Scholar
  56. Varga N, Sutkeviciute I, Ribeiro-Viana R, Berzi A, Ramdasi R, Daghetti A, Vettorett G, Amara A, Clerici M, Rojo J, Fieschi F, Bernardi A (2014) A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials 35:4175–4184PubMedCrossRefGoogle Scholar
  57. Vivas M, Sacristán M, Legaz ME, Vicente C (2010) The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol 12:615–621PubMedGoogle Scholar
  58. Waite AM, Olson RJ, Dam HG, Passow U (1995) Sugar-containing compounds on the cell surfaces of marine diatoms measured using concanavalin A and flow cytometry. J Phycol 31:925–933CrossRefGoogle Scholar
  59. Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993PubMedCrossRefGoogle Scholar
  60. Wootton EC, Zubkov MV, Jones DH, Jones RH, Martel CM, Thornton CA, Roberts EC (2007) Biochemical prey recognition by planktonic protozoa. Environ Microbiol 9:216–222PubMedCrossRefGoogle Scholar
  61. Yamaguchi M, Jimbo M, Sakai R, Muramoto K, Kamiya H (1998) Purification and characterization of Microcystis aeruginosa (freshwater cyanobacterium) lectin. Comp Biochem Physiol B 119:593–597PubMedCrossRefGoogle Scholar
  62. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Cíntia de Almeida Gonçalves
    • 1
  • Rute Cunha Figueiredo
    • 2
  • Alessandra Giani
    • 1
  • Daniel Collado
    • 3
    • 4
  • Ezequiel Pérez-Inestrosa
    • 3
    • 4
  • Javier Rojo
    • 5
  • Cleber Cunha Figueredo
    • 1
    Email author
  1. 1.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Química, Instituto de Ciências Exatas e BiológicasUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.Departamento de Química OrgánicaUniversidad de MálagaMálagaSpain
  4. 4.Centro de Nanomedicina y Biotecnología-BIONAND, Parque Tecnológico de AndalucíaMálagaSpain
  5. 5.Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ)CSIC – Universidad de SevillaSevillaSpain

Personalised recommendations