Journal of Applied Phycology

, Volume 30, Issue 5, pp 2883–2899 | Cite as

Heterotrophic bacteria associated with the green alga Ulva rigida: identification and antimicrobial potential

  • A. Ismail
  • L. Ktari
  • M. Ahmed
  • H. Bolhuis
  • Balkiss Bouhaouala-Zahar
  • L. J. Stal
  • A. Boudabbous
  • M. El BourEmail author
6th Congress of the International Society for Applied Phycology


Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated and subsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla: Proteobacteria (Alpha-and Gamma- subclasses), Bacteroidetes, Firmicutes, and Actinobacteria. Most of the isolates belong to Proteobacteria. The Gram-positive Firmicutes and especially the genus Bacillus were well-represented at the surface of U. rigida, collected from the coast as well as from the lagoon, while Actinobacteria were represented only at the surface of algae collected from the coast of Cap Zebib. Bacteroidetes were more represented at the surface of algae collected from the Ghar El Melh lagoon. The bacterial community of the water surrounding the algae was different from that associated with the surface of the algae. Moreover, the abundance of bacteria in the surrounding water was much lower compared to the density of bacteria associated with the surface of the algae. Bacteria isolated from the algal surface were tested for their antimicrobial potential. The results show that ~ 36% of the algae-associated bacterial isolates possess antibacterial activity whereas free-living bacteria, isolated from the surrounding water, did not show such activity. The surface of U. rigida was colonized by a high diversity of culturable and possibly novel epiphytic bacteria that may be an important source of antimicrobial compounds and are therefore of biotechnological interest.


Epiphytic bacteria Ulva rigida 16S rRNA identification Phylogeny Antibacterial activity 



The authors thank Mrs. Veronique Confurius-Guns, Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), for her assistance and help with PCR and DNA sequencing and Mr. Fourat Akrout of the “National Institute of Marine Sciences and Technology” (INSTM) for his help with the hydrobiological analyses and technical assistance.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Armstrong E, Rogerson A, Leftley JW (2000) The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar Coast Shelf Sci 50:415–424CrossRefGoogle Scholar
  3. Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40CrossRefGoogle Scholar
  4. Azouz A (1971) Possibilité d'ostréiculture dans le lac de Ghar-El-Melh. Bull Inst Natl Sci Tech Océanogr Pêche Salammbo 2:55–58Google Scholar
  5. Ben Maïz N (1995) Etude Nationale sur la biodiversité biologique de la flore marine et aquatique en Tunisie (Monographie). Projet de Coopération MEAT/PNUE/GEF, Ministère de l'Environnement, Tunisie, p1–78Google Scholar
  6. Ben Mustapha K, Afli A (2007) Quelques traits de la biodiversité marine de Tunisie: Proposition d’aires de conservation et de gestion. Report of the Med Sud Med Expert Consultation on Marine Protected Areas and Fisheries Management. Med Sud Med Technical Documents, Rome (Italy) 32–55Google Scholar
  7. Ben Said R, El Abed A, Romdhane MS (2002) Etude d’une population de l’algue brune Padina pavonica (l) lamouroux à CZ (Nord de la Tunisie). Bull Inst Natn Scien Tech Mer de Salammbô 29:95–103Google Scholar
  8. Bolinches J, Lemos ML, Barja JL (1988) Population dynamics of heterotrophic bacterial communities associated with Fucus vesiculosus and Ulva rigida in an estuary. Microb Ecol 15:345–357CrossRefGoogle Scholar
  9. Bondoso J, Godoy-Vitorino F, Balagué V, Gasol JM, Harder J, Lage OM (2017) Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 93(3).
  10. Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241CrossRefGoogle Scholar
  11. Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197–205CrossRefGoogle Scholar
  12. Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of thee epiphytic bacterial community of the green alga Ulva australis. ISME J 5:590–600CrossRefGoogle Scholar
  13. Castaldelli G, Welsh DT, Flachi G, Zucchini G, Colombo G, Rossi R, Fano EA (2003) Decomposition dynamics of the bloom forming macroalga Ulva rigida C. Agardh determined using a 14C-carbon radio-tracer technique. Aquat Bot 75:111–122CrossRefGoogle Scholar
  14. Choi HR, Park SH, Kim DH, Kim JY, Heo MS (2016) Phylogenetic diversity and community analysis of marine bacteria associated with Ulva pertusa. J Life Sci 26:819–825CrossRefGoogle Scholar
  15. Comba-Gonzalez NB, Ruiz-Toquica JS, Lopez-Kleine L, Montoya-Castano D (2016) Epiphytic bacteria of macroalgae of the genus Ulva and their potential in producing enzymes having biotechnological interest. J Mar Biol Oceanogr 5(2).
  16. Coutinho R, Colepicolo P, Marinho-Soriano E, Plastino EM, Fujii MT, Teixeira VE, Yokoya N, Yoneshigue-Valentin Y (2017) V Redealgas workshop: biotechnology and sustainability. J Appl Phycol 29:663–664CrossRefGoogle Scholar
  17. Dang HY, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475CrossRefGoogle Scholar
  18. Del Olmo A, Picon A, Nunez M (2017) The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiol. CrossRefGoogle Scholar
  19. Dhanya KI, Swati VI, Swaroop VK, Osborne WJ (2016) Antimicrobial activity of Ulva reticulata and its endophytes. J Ocean Univ China 15(2):363–369CrossRefGoogle Scholar
  20. Egan S, Holmstrom C, Kjelleberg S (2000) Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 51:1499–1504CrossRefGoogle Scholar
  21. Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225CrossRefGoogle Scholar
  22. Goecke F, Thiel V, Wiese J, Labes A, Imhoff JF (2013) Algae as an important environment for bacteria—phylogenetic relationships among new bacterial species isolated from algae. Phycologia 52:14–24CrossRefGoogle Scholar
  23. Gonzalez JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242PubMedPubMedCentralGoogle Scholar
  24. Gordon AS, Millero FJ (1984) Electrolyte effects on attachment of an estuarine bacterium. Appl Environ Microbiol 47:495–499PubMedPubMedCentralGoogle Scholar
  25. Gram L, Grossart HP, Schlingloff A, Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116CrossRefGoogle Scholar
  26. Grueneberg J, Engelen AH, Costa R, Wichard T (2016) Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11(1):e0146307CrossRefGoogle Scholar
  27. Hamburger M, Hostettmann K (1991) Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry 30:3864–3874CrossRefGoogle Scholar
  28. Hollants J, Leliaert F, De Clerck O, Willems A (2012) What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol 83:1–16CrossRefGoogle Scholar
  29. Hollants J, Leliaert F, Verbruggen H, Willems A, De-Clerck O (2013) Permanent residents or temporary lodgers: characterizing intracellular bacterial communities in the siphonous green alga Bryopsis. Proc R Soc Lond B 280:20122659CrossRefGoogle Scholar
  30. Horta A, Pinteus S, Alves C, Fino N, Silva J, Fernandez S, Pedrosa R (2014) Antioxidant and antimicrobial potential of the bifurcaria bifurcata epiphytic bacteria. Mar Drugs 12:1676–1689CrossRefGoogle Scholar
  31. Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M (2016) Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Front Microbiol 7:1072PubMedPubMedCentralGoogle Scholar
  32. Ismail-Ben Ali A, Ktari L, Bolhuis H, Boudabbous A, Stal LJ, El Bour M (2010) Ulva intestinalis associated bacteria: molecular identification and antimicrobial potential. Rapp Comm Int Mer Médit 39:316Google Scholar
  33. Ismail-Ben Ali A, El Bour M, Ktari L, Bolhuis H, Ahmed M, Boudabbous A, Stal LJ (2012) Jania rubens associated bacteria: molecular identification and antimicrobial activity. J Appl Phycol 24:525–534CrossRefGoogle Scholar
  34. James SG, Holmstrom C, Kjelleberg S (1996) Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 62:2783–2788PubMedPubMedCentralGoogle Scholar
  35. Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584CrossRefGoogle Scholar
  36. Jiang ZD, Jensen PR, Fenical W (1999) Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006CrossRefGoogle Scholar
  37. Jonkers HM, Abed RMM (2003) Identification of aerobic heterotrophic bacteria from the photic zone of a hypersaline microbial mat. Aquat Microb Ecol 30:127–133CrossRefGoogle Scholar
  38. Ksouri J, Elferjani H, Mensi F (2008) Estimation du stock naturel de l’algue brune Padina pavonica (L.) Thivy en Tunisie septentrionale (CZ). Bull Inst Natn Scien Tech Mer Salammbô 35:57–60Google Scholar
  39. Kumar V, Rao D, Thomas T, Kjelleberg S, Egan S (2011) Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. World J Microb Biot 27(7):1543–1549CrossRefGoogle Scholar
  40. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Braker G, Hirsch P (1998) Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372CrossRefGoogle Scholar
  41. Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 11:149–163CrossRefGoogle Scholar
  42. Li Z, He L, Wu J, Jiang Q (2006) Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J Exp Mar Biol Ecol 329:75–85CrossRefGoogle Scholar
  43. Liu M, Dong Y, Zhao Y, Zhang G, Zhang W, Xiao T (2011) Structures of bacterial communities on the surface of Ulva prolifera and in seawaters in an Ulva blooming region in Jiao Zhou Bay, China. World J Microbiol Biotechnol 27:1703–1712CrossRefGoogle Scholar
  44. Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98:2917–2935CrossRefGoogle Scholar
  45. Miller TR, Belas R (2004) Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Appl Environ Microbiol 70:3383–3391CrossRefGoogle Scholar
  46. Moussa M, Baccar L, Ben Khemis R (2005) Ghar El Melh lagoon: ecological diagnoses and future hydraulic restoration. [La lagune de Ghar El Melh: Diagnostic écologique et perspectives d'aménagement hydraulique]. Revue Des Sciences De l'Eau 18 (SPEC. ISS.) 13–26CrossRefGoogle Scholar
  47. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, KS Bae (2004) Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54: 1257–1261CrossRefGoogle Scholar
  48. Nedashkovskaya OI, Kim SB, Lee KH, Bae KS, Frolova GM, Mikhailov VV, Kim IS (2005) Pibocella ponti gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi. Int J Syst Evol Microbiol 55:177–181CrossRefGoogle Scholar
  49. Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 69:113–124CrossRefGoogle Scholar
  50. Qi F, Huang Z, Lai Q, Li D, Shao Z (2016) Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp. Int J Syst Evol Microbiol 66(7):2623–2628CrossRefGoogle Scholar
  51. Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736CrossRefGoogle Scholar
  52. Rao D, Webb JS, Holmstrom C, Case R, Low A, Steinberg P, Kjelleberg S (2007) Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852CrossRefGoogle Scholar
  53. Robertson-Andersson D (2007) Biological and ecological feasibility studies of using seaweeds Ulva lactuca (Chlorophyta) in recirculation systems in abalone farming. Newsl Phycol Soc S Afr 66:6–7Google Scholar
  54. Rua CPJ, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS, Lima A, Kruger R, Pereira RC, Berlinck RGS, Valle RAB, Thompson CC, Thompson F (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2:e419CrossRefGoogle Scholar
  55. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  56. Sghaier YR, Zakhama-Sraieb R, Charfi-Cheikhrouha F (2010) A seasonal pattern of biomass and growth of Cymodocea nodosa in the Ghar El Melh lagoon in response to lagoon condition. Proc 4th Medit Symp Mar Veg 129Google Scholar
  57. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll-a. Syst Appl Microbiol 14:140–145CrossRefGoogle Scholar
  58. Shili A, Trabelsi EB, Ben Maïz N (2002a) Seasonal dynamics of macro-algae in the South Lake of Tunis. J Coast Conserv 8:127–134CrossRefGoogle Scholar
  59. Shili A, Trabelsi EB, Ben Maïz N (2002b) Benthic macrophyte communities in the GE lagoon (North Tunisia). J Coast Conserv 8:135–140CrossRefGoogle Scholar
  60. Singh RP, Reddy CRK (2014) Seaweed-microbial interactions. Key functions of seaweed-associated bacteria. FEMS Microbiol Ecol 88:213–230CrossRefGoogle Scholar
  61. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  62. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:1–310Google Scholar
  63. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  64. Tatewaki M (1983) Morphogenesis of Monostroma oxyspermum (Kütz) Doty (Chlorophyceae) in axenic culture, especially in bialgal culture. J Phycol 19:409–416CrossRefGoogle Scholar
  65. Trischman JA, Oeffner RE, De Luna MG, Kazaoka M (2004) Competitive induction and enhancement of indole and a diketopiperazine in marine bacteria. Mar Biotechnol 6:215–220CrossRefGoogle Scholar
  66. Tujula NA, Holmstrom C, Mußmann M, Amann R, Kjelleberg S, Crocetti GR (2006) A CARD–FISH protocol for the identification and enumeration of epiphytic bacteria on marine algae. J Microbiol Methods 65:604–607CrossRefGoogle Scholar
  67. Tujula NA, Crocetti GR, Burke C, Thomas T, Holmstrom C, Kjelleberg S (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J 4:301–311CrossRefGoogle Scholar
  68. Turki S, Balti N, Ben Salah C (2007) First detection of Kryptoperidinium foliaceum (Stein 1883) in Tunisian waters. The Intergovernmental Oceanographic Commission of UNESCO. An IOC Newsletter on toxic algae and algal blooms; No. 35Google Scholar
  69. Twigg MS, Tait K, Williams P, Atkinson S, Camara M (2014) Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria. Environ Microbiol 16:445–453CrossRefGoogle Scholar
  70. Vesty EF, Kessler RW, Wichard T, Coates JC (2015) Regulation of gametogenesis and zoosporengenesis in Ulva linza (Chlorophyta): comparison with U. mutabilis and potential for laboratory culture. Front Plant Sci 6:15CrossRefGoogle Scholar
  71. Ward AC, Bora N (2006) Diversity and biogeography of marine Actinobacteria. Curr Opin Microbiol 9:279–286CrossRefGoogle Scholar
  72. Weiss A, Costa R, Wichard T (2017) Morphogenesis of Ulva mutabilis (Chlorophyta) induced by Maribacter species (Bacteroidetes, Flavobacteriaceae). Bot Mar 60(2):197–206Google Scholar
  73. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SM, Helliwell KE, Smith AJ, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982CrossRefGoogle Scholar
  74. Welsh DT, Viaroli P, Hamilton WD, Lenton TM (1999) Is DMSP synthesis in chlorophyean macro-algae linked to aerial dispersal. Ethol Ecol Evol 11:265–278CrossRefGoogle Scholar
  75. Wichard T, Charrier B, Mineur F, Bothwell JH, De Clerck O, Coates JC (2015) The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 6:72PubMedPubMedCentralGoogle Scholar
  76. Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11:287–300CrossRefGoogle Scholar
  77. Wu J, Guan T, Jiang H, Zhi X, Tang S, Dong H, Zhang L, Li W (2009) Diversity of actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13:623–632CrossRefGoogle Scholar
  78. ZoBell CE, Grant CW (1942) Bacterial activity in dilute nutrient solutions. Science 96:189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. Ismail
    • 1
    • 2
  • L. Ktari
    • 1
  • M. Ahmed
    • 2
    • 3
  • H. Bolhuis
    • 2
  • Balkiss Bouhaouala-Zahar
    • 4
  • L. J. Stal
    • 2
    • 5
  • A. Boudabbous
    • 6
  • M. El Bour
    • 1
    • 7
    Email author
  1. 1.National Institute of Marine Sciences and Technology (INSTM)SalammbôTunisia
  2. 2.Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea ResearchUtrecht UniversityDen BurgNetherlands
  3. 3.Department of Microbiology and Molecular GeneticsUniversity of the PunjabLahorePakistan
  4. 4.Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of TunisUniversity of Tunis El ManarTunisTunisia
  5. 5.Department of Fresh Water and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamNetherlands
  6. 6.Faculty of MathematicalPhysical and Natural Sciences of TunisTunisTunisia
  7. 7.Department: Marine BiotechnologiesNational Institute of Sea Sciences and TechnologiesTunisTunisia

Personalised recommendations