Journal of Applied Phycology

, Volume 30, Issue 5, pp 2803–2814 | Cite as

The red microalga Flintiella sanguinaria as a new exopolysaccharide producer

  • Clément Gaignard
  • Vanessa Macao
  • Christine Gardarin
  • Christophe Rihouey
  • Luc Picton
  • Philippe Michaud
  • Céline LarocheEmail author
6th Congress of the International Society for Applied Phycology


Flintiella sanguinaria is a red unicellular microalgae belonging to Porphyridiophyceae with a high potential as an exopolysaccharide producer. A new culture medium was developed by a stoichiometry approach based on elemental analysis of microalgae, and culture conditions were improved after measurements of photosynthetic activity as a function of irradiance, temperature and pH. These optimal conditions were thus validated in a photobioreactor for the production of biomass and exopolysaccharide (EPS). After extraction and purification of the EPS, it was characterised by HPAEC-PAD, HPLC and FT-IR as a methylated and acetylated galactoxylan including a significant amount of rhamnose and glucuronic acid in its structure. Macromolecular conformation in dilute solution of native, deproteinised and desubstituted EPS from F. sanguinaria revealed that this polysaccharide had a strong associative behaviour in which hydrophobic interactions or hydrogen bonding but also proteins were implicated.


Flintiella Rhodophyta Exopolysaccharide Culture Characterisation 


Funding information

This work was supported by the ANR POLYSALGUE project, grant ANR-15-CE21-0013 of the French Agence Nationale de la Recherche.


  1. A.P.H.A (1971) Ultraviolets spectrometric method in standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C., pp 237–239Google Scholar
  2. Adda M, Merchuk JC, Arad S (1986) Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131–140CrossRefGoogle Scholar
  3. Arad S, Adda M, Cohen E (1985) The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil 89:117–127CrossRefGoogle Scholar
  4. Arad S, Friedman OD, Rotem A (1988) Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl Environm Microbiol 54:2411–2414Google Scholar
  5. Arad S, Lerental Y, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148CrossRefGoogle Scholar
  6. Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publications 6318:1–95Google Scholar
  7. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefGoogle Scholar
  8. Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  9. Bourrelly P (1970) Les algues d'eau douce. Initiation à la systématique. Tome III: Les Algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Boubée & Cie (Eds), Paris, p 512Google Scholar
  10. Capek P, Matulováa M, Combourieu B (2008). The extracellular proteoglycan produced by Rhodella grisea. Int J Biol Macromol 43: 390–393.CrossRefGoogle Scholar
  11. Casadevall E, Dif D, Largeau C, Gudin C, Chamount D, Desanti O (1985) Studies on batch and continuous culture of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295CrossRefGoogle Scholar
  12. Cawse PA (1967) The determination of nitrate in soil solutions by ultraviolet spectrometry. Analyst 62:311–315CrossRefGoogle Scholar
  13. Chen B, You W, Huang J, Yu Y, Chen W (2010) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol 26:833–840CrossRefGoogle Scholar
  14. Chen YX, Liu XY, Xiao Z, Huang YF, Liu B (2016) Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int J Biol Macromol 91:505–509CrossRefGoogle Scholar
  15. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62CrossRefGoogle Scholar
  16. Cornet J-F (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Engin Sci 65 (2): 985–998.CrossRefGoogle Scholar
  17. Cornet J-F, Dussap C-G (2009) A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog 25:424–435CrossRefGoogle Scholar
  18. Cornet J-F, Dussap C-G, Cluzel P, Dubertret G (1992) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors. I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng 40:817–825CrossRefGoogle Scholar
  19. Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187CrossRefGoogle Scholar
  20. De Philippis R, Margheri MC, Materrasi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132PubMedPubMedCentralGoogle Scholar
  21. Degrenne B, Pruvost J, Christophe G, Cornet J-F, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrog Energy 35:10741–10749CrossRefGoogle Scholar
  22. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179CrossRefGoogle Scholar
  23. Deng J, Shi J-J, Li X-Z, Liu H-M (2013) Soluble polysaccharides isolation and characterization from rabbiteye blueberry (Vaccinium ashei) fruits. Bioresources 8:405–419CrossRefGoogle Scholar
  24. Dermoun D, Chaumont D, Thebault J-M, Dauta A (1992) Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: Light and temperature. Biores Technol 42 (2): 113–117.CrossRefGoogle Scholar
  25. Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110CrossRefGoogle Scholar
  26. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215CrossRefGoogle Scholar
  27. Fabregas J, Garcia D, Morales E, Dominguez A, Otero A (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharides and fatty acid productivity. J Ferment Bioeng 486:477–481CrossRefGoogle Scholar
  28. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA (2009) Advantages of a proteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem 112:604–608CrossRefGoogle Scholar
  29. Geresh S, Lupescu N, Arad S (1992) Fractionation and partial characterization of the sulphated polysaccharide of Porphyridium. Phytochemistry 31:4181–4186CrossRefGoogle Scholar
  30. Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Biophys Meth 50:179–187CrossRefGoogle Scholar
  31. Geresh S, Arad SM, Levy-Ontman O, Zhang W, Tekoah Y, Glaser R (2009) Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res 344:343–349CrossRefGoogle Scholar
  32. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520CrossRefGoogle Scholar
  33. Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670CrossRefGoogle Scholar
  34. Heaney-Kieras J, Rodén L, Chapman DJ (1977) The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J 165:1–9CrossRefGoogle Scholar
  35. Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohyd Polym 54:33–42CrossRefGoogle Scholar
  36. Iqbal M, Zafar SI (1993) Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production by Porphyridium cruentum. Folia Microbiol 38 (6):509–514.CrossRefGoogle Scholar
  37. Kačuráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Pol 43:195–203CrossRefGoogle Scholar
  38. Levigne S, Thomas M, Ralet M-C, Quemener B, Thibault J-F (2002) Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll 16:547–550CrossRefGoogle Scholar
  39. Levy I, Gantt E (1988) Light acclimatation in Porphyridium purpureum (Rhodophyta): growth, photosynthesis and phycobilisomes. J Phycol 24:452–458Google Scholar
  40. Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y (2011) Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J Biol Chem 286:21340–21352CrossRefGoogle Scholar
  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. Majdoub H, Ben Mansour M, Chaubet F, Roudesli MS, Maaroufi RM (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim Biophys Acta 1790:1377–1381CrossRefGoogle Scholar
  43. Manrique GD, Lajolo FM (2002) FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol Tech 25:99–107CrossRefGoogle Scholar
  44. Maréchal Y (1997) Interaction configurations of H2O molecules in a protein (stratum corneum) by infrared spectrometry. J Mol Struct 416:133–143CrossRefGoogle Scholar
  45. Millard P, Evans LV (1982) Sulphate uptake in the unicellular marine red alga Rhodella maculata. Arch Mikrobiol 131:165–169CrossRefGoogle Scholar
  46. Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulphuric acid micromethod. Anal Biochem 175:525–530CrossRefGoogle Scholar
  47. Monsoor MA, Kalapathy U, Proctor A (2001) Determination of polygalacturonic acid content in pectin extracts by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem 74:233–238CrossRefGoogle Scholar
  48. Montreuil J, Spik G, Chosson A, Segard E, Scheppler N (1963) Methods of study of the structure of glycoproteins. J Pharm Belg 18:529–546PubMedGoogle Scholar
  49. Muller-Feuga A, Le Guédes R, Pruvost J (2003) Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. J Biotechnol 103 (2):153–163.CrossRefGoogle Scholar
  50. Ott FD (1976) Further observations on the freshwater alga Flintiella sanguinaria Ott in Bourrelly 1970 (Rhodophycophyta, Porphyridiales). Arch Protistenkd 118:34–52Google Scholar
  51. Page FC, Siemensma FJ (1991) Nackte Rhizopoda und Heliozoea. Gustav Fischer Verlag, Stuttgart, p 297Google Scholar
  52. Park G-T, Go R-E, Lee H-M, Lee G-A, Kim C-W, Seo J-W, Hong W-K, Choi K-C, Hwang K-A (2017) Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro. Mar Biotechnol 19:136–146CrossRefGoogle Scholar
  53. Percival E, Foyle RAJ (1979) The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res 72:165–176CrossRefGoogle Scholar
  54. Pereira S, Zille A, Micheletti E, Moradas-Ferraira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941CrossRefGoogle Scholar
  55. Pruvost J, Cornet J-F (2012) Knowledge models for the engineering and optimization of photobioreactors. In: Posten C, Walter C (eds) Microalgal biotechnology. Walter De Gruyter, Berlin, pp 181–224Google Scholar
  56. Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489CrossRefGoogle Scholar
  57. Ritz M, Thomas JC, Spilar A, Etienne AL (2000) Kinetics of photoacclimatation in reponse to a shift to high light irradiance of the red algae Rhodella violacea adapted to low irradiance. Plant Physiol 123:1415–1425CrossRefGoogle Scholar
  58. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  59. Roussel M, Villay A, Delbac F, Michaud P, Laroche C, Roriz D, El Alaoui H, Diogon M (2015) Antimicrosporidian activity of sulphated polysaccharide from algae and their potential to control honeybee nosemis. Carbohydr Polym 133:213–220CrossRefGoogle Scholar
  60. Scott J (1986) Ultrastructure of cell division in the unicellular red alga Flintiella sanguinaria. Can J Bot 64:516–524CrossRefGoogle Scholar
  61. Shrestha RP, Weinstein Y, Bar-Zvi D, Arad SM (2004) A glycoprotein noncovalently associated with cell-wall polysaccharide of the red microalga Porphyridium sp. (Rhodophyta). J Phycol 40:568–580CrossRefGoogle Scholar
  62. Soanen N, Da Silva E, Gardarin C, Michaud P, Laroche C (2016) Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol 213:231–238CrossRefGoogle Scholar
  63. Takache H, Christophe G, Cornet J-F, Pruvost J (2010) Experimental and theoretical assessment of maximum productivities for the micro-algae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26:431–440PubMedGoogle Scholar
  64. Tomar S, Adaganti SY (2013) Production of ethanol using Calliandra shrub by hydrothermal pretreatment method. Int J Curr Engineer Tech 3:1921–1924Google Scholar
  65. Toncheva-Panova TG, Ivanova JG (2002) Interactions between the red alga Rhodella reticulata (Rhodophyta) and contaminated bacteria. J Appl Microbiol 93:497–504CrossRefGoogle Scholar
  66. Villay A, Laroche C, Roriz D, El Alaoui H, Delbac F, Michaud P (2013) Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol 146:732–735CrossRefGoogle Scholar
  67. Voragen AGJ, Schols HA, Pilnik W (1986) Determination of the degree of methylation and acetylation of pectins by HPLC. Food Hydrocoll 1:65–70CrossRefGoogle Scholar
  68. Yokoyama A, Sato K, Hara Y (2004) The generic delimitation of Rhodella (Porphyridiales, Rhodophyta) with emphasis on ultrastructure and molecular phylogeny. Hydrobiologia 512:177–183CrossRefGoogle Scholar
  69. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Clermont Auvergne, CNRS, Institut PascalClermont-FerrandFrance
  2. 2.UNIROUEN, INSA Rouen, CNRS, PBSNormandie UnivRouenFrance

Personalised recommendations