Advertisement

Journal of Applied Phycology

, Volume 30, Issue 3, pp 1765–1776 | Cite as

Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta)

  • Sabrine Ben Ouada
  • Rihab Ben Ali
  • Christophe Leboulanger
  • Hatem Zaghden
  • Sirine Choura
  • Hatem Ben Ouada
  • Sami SayadiEmail author
Article

Abstract

The effects and the removal efficiency of bisphenol A (BPA) on two extremophilic Chlorophyta strains, an alkaliphilic Picocystis and a thermophilic Graesiella, were assessed. BPA was shown to inhibit the growth and photosynthesis of both species, but to a greater extent for Graesiella. The growth IC50 (4 days) was 32 mg L−1 for Graesiella and higher than 75 mg L−1 for Picocystis. Oxidative stress was induced in both strains when exposed to increasing BPA concentrations, as evidenced by increased malondialdehyde content. BPA exposure also resulted in an over-expression of antioxidant activities (ascorbate peroxidase, glutathione S-transferase and catalase) in Picocystis whereas they were repressed in Graesiella. Both species exhibited high BPA removal efficiency, reaching 72% for Picocystis and 52.6% for Graesiella at 25 mg L−1. BPA removal was mostly attributed to biodegradation for both species. Overall, according to its extended tolerance and its removal capacity, Picocystis appeared to be a promising species for the BPA bioremediation even at high contamination levels.

Keywords

Microalgae Extremophiles Chlorophyta Bisphenol a Toxicity Biodegradation 

Notes

Funding information

Authors are thankful to the French Research Institute for Development (IRD) for financing the Ph.D stipend of Sabrine Ben Ouada under the Laboratory LMI Cosys-med project. The support of this work under “Contrat Programme of Laboratory of Environmental Bioprocesses” by The Tunisian Ministry of Higher Education and Scientific Research is also gratefully acknowledged.

References

  1. Aguilera A, Amils R (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat Toxicol 75:316–329CrossRefPubMedGoogle Scholar
  2. Arboleda C, Cabana H, De Peril E, Jones P, Jimenez G, Mejia A, Agathos S, Penninckx M (2013) Elimination of bisphenol a and triclosan using the enzymatic system of autochthonous Colombian forest fungi. ISRN Biotechnol.  https://doi.org/10.5402/2013/968241 CrossRefGoogle Scholar
  3. Asadgol Z, Forootanfar H, Rezaei S, Mahvi AH, Faramarzi MA (2014) Removal of phenol and bisphenol-A catalyzed by laccase in aqueous solution. J Environ Health Sci Engin 12:1–5CrossRefGoogle Scholar
  4. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190CrossRefGoogle Scholar
  5. Ashton AR, Ziegler P (1987) Lack of effect of the photosystem II-based herbicides diuron and atrazine on growth of photoheterotrophic Chenopodium rubrumcells at concentrations inhibiting photoautotrophic growth of these cells. Plant Sci 51:269–276CrossRefGoogle Scholar
  6. Belfroida A, Velzena M, der Horsta B, Vethaak D (2002) Occurrence of bisphenol a in surface water and uptake in fish: evaluation of field measurements. Chemosphere 49:97–103CrossRefGoogle Scholar
  7. Ben Ali R, Ben Ouada S, Chouchene L, Messaoudi I, Ben Ouada H, Othmane A (2017) Cadmium effect on physiological responses of the tolerant Chlorophyta specie Picocystis sp. isolated from Tunisian wastewaters. Environ Sci Pollut Res 24:1803–1810CrossRefGoogle Scholar
  8. Biedermann-Brem S, Grob K (2008) Release of bisphenol a from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679–684CrossRefGoogle Scholar
  9. Bischoff HW, Bold HC (1963) Some soil algae from enchanted rock and related algal species. In: Austin T (ed) Phycological studies IV, University of Texas Publication, vol 6318, pp 1–95Google Scholar
  10. Claiborne AL (1985) Catalase activity. In: CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, FL, pp 283–284Google Scholar
  11. Costas E, Carrillo E, Ferrero LM, Agrelo M, Garcia-Villada L, Juste J, LópezRodas V (2001) Mutation of algae from sensitivity to resistance against environmental selective agents: the ecological genetics of Dictyosphaerium chlorelloides (Chlorophyceae) under lethal doses of 3-(3,4-dichlorophenyl)-1,1 dimethylurea herbicide. Phycologia 40:391–398CrossRefGoogle Scholar
  12. de Orte MR, Carballeira C, Viana IG, Carballeira A (2013) Assessing the toxicity of chemical compounds associated with marine land-based fish farms: the use of mini-scale microalgal toxicity tests. Chem Ecol 29(6):554–563CrossRefGoogle Scholar
  13. Eio EJ, Kawai M, Niwa C, Ito M, Yamamoto S, Toda T (2015) Biodegradation of bisphenol a by an algal-bacterial system. Environ Sci Pollut Res 22:15145–15153CrossRefGoogle Scholar
  14. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580CrossRefPubMedGoogle Scholar
  15. Elsheery NI, Cao K-F (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777CrossRefGoogle Scholar
  16. Endo Y, Kimura N, Ikeda I, Fujimoto K, Kimoto H (2007) Adsorption of bisphenol a by lactic acid bacteria, Lactococcus, strains. Appl Microbiol Biotechnol 74:202–207CrossRefPubMedGoogle Scholar
  17. Filho IDN, von Muhlen C, Schossler P, Caramao EB (2003) Identification of some plasticizers compounds landfill leachate. Chemosphere 50:657–663CrossRefGoogle Scholar
  18. García-Balboa C, Baselga-Cervera B, García-Sanchez A, Igual JM, Lopez-Rodas V, Costas E (2013) Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: an explanation of how mesophilic organisms can rapidly colonise extremely toxic environments. Aquat Toxicol 144-145:116–123CrossRefPubMedGoogle Scholar
  19. Garcia Villada L, Rico M, Altamirano M, Sanchez L, López Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterization and future implications in the use of copper sulphate as algaecide. Water Res 38:2207–2213CrossRefPubMedGoogle Scholar
  20. Gattullo CE, Bährs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol a by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506CrossRefPubMedGoogle Scholar
  21. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefPubMedGoogle Scholar
  22. Gulnaz O, Dincer S (2009) Biodegradation of bisphenol a by Chlorella vulgaris and Aeromonas hydrophila. JABS 3:79–84Google Scholar
  23. Guo R, Du Y, Zheng F, Wang J, Wang Z, Ji R, Chen J (2017) Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. Environ Pollut 227:460–467CrossRefPubMedGoogle Scholar
  24. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  25. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427CrossRefPubMedGoogle Scholar
  26. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88CrossRefPubMedGoogle Scholar
  27. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–189CrossRefGoogle Scholar
  28. Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, Nishihara T, Miyamoto K, Hirata Z (2005) Biodegradation of bisphenol a and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem 24:1896–1901CrossRefPubMedGoogle Scholar
  29. Hoekstra EJ, Simoneau C (2013) Release of bisphenol a from polycarbonate: a review. Crit Rev Food Sci Nutr 53:386–402CrossRefPubMedGoogle Scholar
  30. Jandegian CM, Deem SL, Bhandari RK, Holliday CM, Nicks D, Rosenfeld CS, Selcer KW, Tillitt DE, Vom Saal FS, Vélez-Rivera V, Yang Y, Holliday DK (2015) Developmental exposure to bisphenol a (BPA) alters sexual differentiation in painted turtles (Chrysemys picta). Gen Comp Endocrinol 216:77–85CrossRefPubMedGoogle Scholar
  31. Ji M-K, Kabra AN, Choi J, Hwang J-H, Kim JR, Abou-Shanab RI, Oh Y-K, Jeon B-H (2014) Biodegradation of bisphenol a by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng 73:260–269CrossRefGoogle Scholar
  32. Kabuto H, Hasuike S, Minagawa N, Shishibori T (2003) Effects of bisphenol a on the metabolisms of active oxygen species in mouse tissues. Environ Res 93:31–35CrossRefPubMedGoogle Scholar
  33. Kang J-H, Katayama Y, Kondo F (2006) Biodegradation or metabolism of bisphenol a: from microorganisms to mammals. Toxicology 217:81–90CrossRefPubMedGoogle Scholar
  34. Kang J-H, Asai D, Aasi D, Katayama Y (2007) Bisphenol a in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit Rev Toxicol 37:607–625CrossRefPubMedGoogle Scholar
  35. Kawaguti HY, Manrich E, Sato HH (2006) Production of isomaltulose using Erwinia sp. D12 cells: culture medium optimization and cell immobilization in alginate. Biochem Eng J 29:270–277CrossRefGoogle Scholar
  36. Le HH, Carlson EM, Chua JP, Belcher SM (2008) Bisphenol a is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176:149–156CrossRefPubMedGoogle Scholar
  37. Lee H-B, Peart TE (2000) Determination of bisphenol a in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. J AOAC Inter 83:290–298Google Scholar
  38. Li R, Chen GZ, Tam NFY, Luan TG, Shin PKS, Cheung SG, Liu Y (2009) Toxicity of bisphenol a and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf 72:321–328CrossRefPubMedGoogle Scholar
  39. Liu XL, Wu F, Deng NS (2004) Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp. Environ Sci Technol 38:296–299CrossRefPubMedGoogle Scholar
  40. Liu Y, Guan Y, Gao Q, Tam NFY, Zhu W (2010) Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80:592–599CrossRefPubMedGoogle Scholar
  41. Lopez-Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marva F, García ME, Costas E (2007) Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evol Ecol 21:535–547CrossRefGoogle Scholar
  42. Marvá F, López-Rodas V, Rouco M, Navarro M, Toro FJ, Costas E, Flores-Moya A (2010) Adaptation of green microalgae to the herbicides simazine and diquat as result of pre-selective mutations. Aquat Toxicol 96:130–134CrossRefPubMedGoogle Scholar
  43. Mezhoud N, Zili F, Bouzidi N, Helaoui F, Ammar J, Ben Ouada H (2014) The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella. Bioprocess Biosyst Eng 37:2271–2280CrossRefPubMedGoogle Scholar
  44. Michałowicz J (2014) Bisphenol a—sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758CrossRefPubMedGoogle Scholar
  45. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  46. Nakajima N, Ohshima Y, Serizawa S, Kouda T, Edmonds J, Shiraishi F, Aono M, Kubo A, Tamaoki M, Saji H, Morita M (2002) Processing of bisphenol a by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol 43:1036–1042CrossRefPubMedGoogle Scholar
  47. Nakajima N, Teramoto T, Kasai F, Sano T, Tamaoki M, Aono M, Kubo A, Kamada H, Azumi Y, Saji H (2007) Glycosylation of bisphenol a by freshwater microalgae. Chemosphere 69:934–941CrossRefPubMedGoogle Scholar
  48. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  49. Nam S-H, Seo Y-M, Kim M-G (2010) Bisphenol a migration from polycarbonate baby bottle with repeated use. Chemosphere 79:949–952CrossRefPubMedGoogle Scholar
  50. Nguyen-Deroche TLN (2008) Effets du cuivre et du zinc sur la photosynthèse et le métabolisme d’une cyanobactérie et de diatomées marines du littoral Vietnamien; comparaison avec des espèces de la côte atlantique française. PhD thesis, University of Maine, Le Mans, FranceGoogle Scholar
  51. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132CrossRefGoogle Scholar
  53. Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Degradation of bisphenol a in water by TiO2 photocatalyst. Environ Sci Technol 35:2365–2368CrossRefPubMedGoogle Scholar
  54. Otto B, Beuchel C, Liers C, Reisser W, Harms H, Schlosser D (2015) Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol Lett 362(11).  https://doi.org/10.1093/femsle/fnv072
  55. Peng Z, Yang H, Wu F, Wang B, Wang Z (2009) Microalgae-induced photodegradation of bisphenol F under simulated sunlight. 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2009)Google Scholar
  56. Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51:283–297CrossRefPubMedGoogle Scholar
  57. Quicker G, Schumpe A, König B, Deckwer W-D (1981) Comparison of measured and calculated oxygen solubilities in fermentation media. Biotechnol Bioeng 23:635–650CrossRefGoogle Scholar
  58. Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RBN, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450Google Scholar
  59. Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23:753–758CrossRefGoogle Scholar
  60. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41CrossRefPubMedGoogle Scholar
  61. Saiyood S, Vangnai AS, Thiravetyan P, Inthorn D (2010) Bisphenol a removal by the Dracaena plant and the role of plant-associating bacteria. J Hazard Mater 178:777–785CrossRefPubMedGoogle Scholar
  62. Seckbach J, Chapman DJ, Garbary D, Oren A, Reisser W (2007) Algae and cyanobacteria in extreme environments. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht, pp 781–786Google Scholar
  63. Si HY, Xiang TC, Wang RT (2014) Effects of pH and temperature on the degradation of polycarbonate in water. Appl Mech Mater 522-524:346–348CrossRefGoogle Scholar
  64. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205PubMedPubMedCentralGoogle Scholar
  65. Staples C, Dom PB, Klecka GM, Sandra TO, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol a. Chemosphere 36:2149–2173CrossRefPubMedGoogle Scholar
  66. Strasser R, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation, London, pp 445–483Google Scholar
  67. Sun Q, Li Y, Chou P-H, Peng P-Y, Yu CP (2012) Transformation of bisphenol a and alkylphenols by ammonia-oxidizing bacteria through nitration. Environ Sci Technol 46:4442–4448CrossRefPubMedGoogle Scholar
  68. United States Environmental Protection Agency (2010) Bisphenol A action plan (CASRN 80-05-7) [CA Index Name: Phenol, 4,4′-(1-methylethylidene)bis-]. Accessed at https://www.epa.gov/sites/production/files/2015-09/documents/bpa_action_plan.pdf
  69. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2014) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372CrossRefPubMedGoogle Scholar
  70. Wang P, Wong MH, Tam NFY (2013) Antioxidant responses of two microalgae, Selenastrum capricornutum and Chlorella sp., to estradiol and ethinylestradiol. J Appl Phycol 25:891–903CrossRefGoogle Scholar
  71. Wang Q, Wang L, Han R, Yang L, Zhou Q, Huang X (2015) Effects of bisphenol a on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34:1127–1133CrossRefPubMedGoogle Scholar
  72. Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497CrossRefPubMedGoogle Scholar
  73. Webb H, Arnott J, Crawford R, Ivanova E (2012) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5:1–18CrossRefGoogle Scholar
  74. Wu J, Neimanis S, Heber U (1991) Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot Acta 104:283–291CrossRefGoogle Scholar
  75. Xiong J-Q, Kurade MB, Abou-Shanab RAI, Ji M-K, Choi J, Kim JO, Jeon B-H (2016) Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol 205:183–190CrossRefPubMedGoogle Scholar
  76. Yamamoto T, Yasuhara A (1999) Quantities of bisphenol a leached from plastic waste samples. Chemosphere 38:2569–2576CrossRefPubMedGoogle Scholar
  77. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol a in hazardous waste landfill leachates. Chemosphere 42:415–418CrossRefPubMedGoogle Scholar
  78. Zarrouk C (1966) Contribution à l’étude d'une Cyanophycée, influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de “Spirulina maxima” (Setch et Gardner) Geitler. PhD thesis, University of Paris, FranceGoogle Scholar
  79. Zhang W, Xiong B, Sun W-F, An S, Lin K-F, Guo M-J, Cui X-H (2014) Acute and chronic toxic effects of bisphenol a on Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Toxicol 29:714–722CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sabrine Ben Ouada
    • 1
    • 2
    • 3
  • Rihab Ben Ali
    • 2
  • Christophe Leboulanger
    • 3
  • Hatem Zaghden
    • 1
  • Sirine Choura
    • 1
  • Hatem Ben Ouada
    • 2
  • Sami Sayadi
    • 1
    Email author
  1. 1.Laboratory of Environmental BioprocessesCenter of Biotechnology of SfaxSfaxTunisia
  2. 2.Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and TechnologyMonastirTunisia
  3. 3.UMR 248 MARBEC (IRD-University Montpellier-CNRS-Ifremer)SéteFrance

Personalised recommendations