Journal of Applied Phycology

, Volume 30, Issue 3, pp 1607–1616 | Cite as

Effects of UV-C radiation on Chlorella vulgaris, a biofilm-forming alga

  • Stéphane Pfendler
  • Badr Alaoui-Sossé
  • Laurence Alaoui-Sossé
  • Faisl Bousta
  • Lotfi Aleya


Photosynthetic biofilms proliferating on heritage monuments represent a major threat for curators leading to biodegradation and esthetic issues. Previous studies demonstrated that UV-C, used as a tool for biofilm eradication, is a promising avenue to combat microbial proliferation. In this study, this environmentally friendly method was tested on biofilm-forming Chlorella vulgaris suspension. Algal physiological response to UV-C was then assessed. Results showed that > 10 kJ m−2 UV-C exposure was enough to directly kill cells whereas low UV-C exposure reduced quantum yield of photosystem II and inhibited both respiration and photosynthesis. Clear relationships between UV-C exposure times and physiological responses were found. In addition, the use of VIS-light after UV-C treatment enhances chlorophyll bleaching. Our findings contribute to a better understanding of the physiological responses of Chlorella vulgaris to UV-C radiation allowing thus an optimization of the UV-C treatment reported in our previous studies.


UV-C Chlorella Photosystem II Bleaching Biofilm 



We thank the Ministère de la Culture et de la Communication (France), the Laboratoire de Recherche des Monuments Historiques (LRMH, Paris), and the Conseil Régional of Franche-Comté for their financial aid. We express our appreciation to the editor and to the anonymous reviewers for helping to improve our paper.


  1. Aguilera J, Karsten U, Lippert H, Vogele B, Philippe E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119CrossRefGoogle Scholar
  2. Aiamla-or S, Kaewsuksaeng S, Shigyo M, Yamauchi N (2010) Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica group) florets. Food Chem 120:645–651CrossRefGoogle Scholar
  3. Aley T (1972) Control of unwanted plant growth in electrically lighted caves. Caves Karst J 14:33–35Google Scholar
  4. Bastian F, Alabouvette C, Saiz-Jimenez C (2009) The impact of arthropods on fungal community structure in Lascaux cave. J Appl Microbiol 106:1456–1462CrossRefPubMedGoogle Scholar
  5. Björn LO (2007) Stratospheric ozone, ultraviolet radiation and cryptogams. Biol Conserv 135:326–333CrossRefGoogle Scholar
  6. Bolige A, Kiyota M, Goto K (2005) Circadian rhythms of resistance to UV-C and UV-B radiation in Euglena as related to escape from light and resistance to light J Photochem Photobiol B 81:43–54Google Scholar
  7. Borderie F, Alaoui-Sossé L, Raouf N, Bousta F, Orial G, Riefel D, Aaloui-Sossé B (2011) UV-C irradiation as a tool to eradicate algae in caves. Int Biodeterior Biodegrad 65:579–584CrossRefGoogle Scholar
  8. Borderie F, Tête N, Cailhol D, Alaoui-Sehmer L, Bousta F, Rieffel D, Aleya L, Alaoui-Sossé B (2014) Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci Total Environ 484:43–52CrossRefPubMedGoogle Scholar
  9. Boston P (2006) To bleach or not to bleach: algae control in show caves. In: Hildreth-Werker V, Werker JC (eds) Cave conservation and restoration. National Speleological Society, Huntsville, pp 349–350Google Scholar
  10. Canaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240CrossRefGoogle Scholar
  11. Cennamo P, Marzano C, Ciniglia C, Pinto G, Cappelletti P, Caputo P, Pollio A (2012) A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archeological district. J Cave Karst Stud 74:243–250CrossRefGoogle Scholar
  12. Chairat B, Nutthachai P, Varit S (2013) Effect of UV-C treatment on chlorophyll degradation, antioxidant enzyme activities and senescence in Chinese kale (Brassica oleracea var . alboglabra). Int Food Res J 20:623–628Google Scholar
  13. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516CrossRefPubMedGoogle Scholar
  14. Costa L, Vicente AR, Civello PM, Chaves AR, Martínez GA (2006) UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biol Technol 39:204–210CrossRefGoogle Scholar
  15. Demming-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  16. Elliot W (2006) Biological dos and don’ts for cave conservation and restoration—best management practices. In: Hildreth-Werker V, Werker JC (eds) Cave conservation and restoration. National Speleological Society, Huntsville, pp 33–42Google Scholar
  17. Elliott W (1997) A survey of ecologically disturbed areas in Carlsbad cavern, New Mexico. Report to Carlsbad Caverns National Park, p 10Google Scholar
  18. Faimon J, Stelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the Císarská cave (Moravian karst, Czech Republic). Sci Total Environ 369:231–245CrossRefPubMedGoogle Scholar
  19. Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Unraveling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta 231:1335–1342CrossRefPubMedGoogle Scholar
  20. Gao Y, Cui Y, Xiong W, Li X, Wu Q (2009) Effect of UV-C on algal evolution and differences in growth rate, pigmentation and photosynthesis between prokaryotic and eukaryotic algae. Photochem Photobiol 85:774–782CrossRefPubMedGoogle Scholar
  21. Grobbelaar JU (2000) Lithophytic algae: a major threat to the karst formation of show caves. J Appl Phycol 12:309–315CrossRefGoogle Scholar
  22. Hildreth-Werker V, Werker J (2006) Cave restoration overview—why call it cave restoration? In: Hildreth- Werker V. & Werker J.C., editors. Cave Conservation and Restoration. Huntsville: National Speleological Society, 293–302Google Scholar
  23. Jiang T, Jahangir MM, Jiang Z, Lu X, Ying T (2010) Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biol Technol 56:209–215CrossRefGoogle Scholar
  24. Karsten U, Karsten U, Lembcke S, Schumann R (2007) The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225:991–100CrossRefPubMedGoogle Scholar
  25. Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govindjee G (eds) Chlorophyll a fluorescence. Springer, Dordrecht, pp 463–495Google Scholar
  26. Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154CrossRefGoogle Scholar
  27. Kulandaivelu G, Noorudeen AM (1983) Comparative study of the action of ultraviolet-C and ultraviolet-B radiation on photosynthetic electron transport. Physiol Plant 58:389–394Google Scholar
  28. Lamprinou V, Danielidis DB, Pantazidou A, Oikonomou A, Economou-Amilli A (2014) The show cave of Diros vs. wild caves of Peloponnese , Greece—distribution patterns of cyanobacteria. Int J Speleol 43:335–342CrossRefGoogle Scholar
  29. Lichtenthaler HK, Wellburn AR (1983) Determinations of total caratenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–592Google Scholar
  30. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  31. Menetrez MY, Foarde KK, Dean TR, Betancourt DA (2010) The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chem Eng J 157:443–450CrossRefGoogle Scholar
  32. Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P (2014) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 65:1243–1255Google Scholar
  33. Moharikar S, D'Souza JS, Kulkarni AB, Rao BJ (2006) Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses. J Phycol 42:423–433CrossRefGoogle Scholar
  34. Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115Google Scholar
  35. Mulec J, Kosi G, Vrhovsek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12Google Scholar
  36. Mulley D, Ghoshal D, Goyal A (2001) UV-A inhibition of alternative respiration in pea leaves and an unicellular green alga Chlamydomonas reinhardtii. Plant Biochem Biotech 10:143–146CrossRefGoogle Scholar
  37. Nasibi F, M’Kalantari KH (2005) The effects of UV-A, UV-B and UV-C on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in Brassica napus. Iranian J Sci Technol Trans A 29:39–48Google Scholar
  38. Nawkar GM, Maibam P, Park JH, Sahi VP (2013) UV-induced cell death in plants. Int J Mol Sci 8:1608–1628CrossRefGoogle Scholar
  39. Neves-Petersen MT, Gajula GP, Petersen SB (2012) UV light effects on proteins: from photochemistry to nanomedicine. In: Saha S (ed) Molecular photochemistry—various aspects, InTech, Riejeka pp. 125-158Google Scholar
  40. Olson R (2002) Control of lampenflora in Mammoth Cave National Park. In: Hazslinsky T (ed) International conference on cave lighting. Hungarian Speleological Society, Budapest, pp 131–133Google Scholar
  41. Piano E, Bona F, Falasco E, La Morgia V, Badino G, Isaia M (2015) Environmental drivers of phototrophic biofilms in an alpine show cave (SW-Italian Alps). Sci Total Environ 536:1007–1018CrossRefPubMedGoogle Scholar
  42. Popović S, Simić GS, Stupar M, Unković N, Jovanović J, Grbić ML (2015) Cyanobacteria, algae and microfungi present in biofilm from Božana cave (Serbia). Int J Speleol 44:141–149CrossRefGoogle Scholar
  43. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:12–0146021CrossRefGoogle Scholar
  44. Sánchez FJ, Meeßen J, Ruiz C, Sancho LG, Ott S, Vílchez C, Horneck G, Sadowsky A, Torre R De (2014) UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. Int J Astrobiol 13:1–18Google Scholar
  45. Sass L, Spetea C, Máté Z, Nagy F, Vass I (1997) Repair of UV-B induced damage of photosystem II via de novo synthesis of D1 and D2 reaction centre subunits in Synechocystis sp. PCC 6803. Photosynth Res 54:55–62CrossRefGoogle Scholar
  46. Shelly K, Heraud P, Beardall J (2003) Interactive effects of PAR and UV-B radiation on PSII electron transport in the marine alga Dunaliella tertiolecta (Chlorophyceae). J Phycol 39:509–512CrossRefGoogle Scholar
  47. Sherwood AR, Presting GG (2007) Universal primers amplify a 23s rDNA plastid marker in eukaryotic algae and cyanobacteria. J Phycol 43:605–608CrossRefGoogle Scholar
  48. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236CrossRefPubMedGoogle Scholar
  49. Smith T, Olson R (2007) A taxonomic survey of lamp flora (algae and cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36:105–114CrossRefGoogle Scholar
  50. Srilaong V, Aiamlaor S, Soontornwat A, Shigyo M, Yamauchi N (2011) UV-B irradiation retards chlorophyll degradation in lime (Citrus latifolia Tan.) fruit. Postharvest Biol Technol 59:110–112CrossRefGoogle Scholar
  51. Sztatelman O, Grzyb J, Gabryś H, Banaś AK (2015) The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC Plant Biol 15(1):281CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O (1996) Induction of repair and damage to DNA in cucumber cotyledons irradiated with UV-B. Plant Cell Physiol 37:181–187CrossRefGoogle Scholar
  53. Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A 93:2213–2218CrossRefPubMedPubMedCentralGoogle Scholar
  54. Urzì C, De Leo F, Galletta M, Salamone P (2000) Efficiency of biocide in “in situ” and “in vitro” treatment Study case of the “Template de Mudejar”, Conference: 9th International Congress on Deterioration and Conservation of Stone, At Venice, Italy, Volume: 1, pp. 9Google Scholar
  55. Vass I, Szilárd A, Sicora C (2005) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker Inc, New York, pp 931–949Google Scholar
  56. Wang B, Wang X, Hu Y, Chang M, Bi Y, Hu Z (2015) Chemosphere the combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium. Chemosphere 141:34–43CrossRefPubMedGoogle Scholar
  57. Wong CY, Teoh ML, Phang SM, Lim PE, Beardall J (2015) Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair. PLoS One 10:0139469Google Scholar
  58. Xue LG, Zhang Y, Zhang TG, An LZ, Wang XL (2005) Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Crit Rev Microbiol 31:79–89CrossRefPubMedGoogle Scholar
  59. Zhao Y, Wang J, Zhang H, Yan C, Zhang Y (2013) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour Technol 136:461–468CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Stéphane Pfendler
    • 1
  • Badr Alaoui-Sossé
    • 1
  • Laurence Alaoui-Sossé
    • 1
  • Faisl Bousta
    • 2
  • Lotfi Aleya
    • 1
  1. 1.Laboratoire Chrono-Environnement—UMR 6249Université de Bourgogne Franche-ComtéBesançonFrance
  2. 2.Centre de Recherche sur la Conservation—Laboratoire de recherche des monuments historiques—USR 3224ParisFrance

Personalised recommendations