Journal of Applied Phycology

, Volume 30, Issue 3, pp 1893–1904 | Cite as

The combined effects of PAR and temperature including the chilling-light stress on the photosynthesis of a temperate brown alga, Sargassum patens (Fucales), based on field and laboratory measurements

  • Ryuta TeradaEmail author
  • Kazuya Matsumoto
  • Iris Ann Borlongan
  • Yuki Watanabe
  • Gregory N. Nishihara
  • Hikaru Endo
  • Satoshi Shimada


The combined effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of a temperate Japanese brown alga, Sargassum patens (Fucales), were determined by field and laboratory measurements. Underwater measurements of the natural population of this alga in Kagoshima, Japan, revealed that the effective quantum yield (Φ PSII ) declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating dynamic photoinhibition. In laboratory experiments, Φ PSII was also negatively correlated with PAR, which decreased after 12 h of continuous exposure to 200 (low) and 1000 (high) μmol photons m−2 s−1 at 8, 20, and 28 °C. Maximum quantum yield (F v /F m ) at 8 °C with low PAR failed to recover after 12 h of dark acclimation, suggesting the influence of low temperature in chronic photoinhibition. Photosynthesis–irradiance (PE) curves likewise revealed lower net photosynthetic rates and photoinhibition at 8 °C. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (8–40 °C) revealed that the maximum gross photosynthetic rate (GP max) occurred at 26.9 °C. F v /F m after 72 h of temperature exposures was stable at 8–32 °C; but it was deactivated at 36 and 40 °C. This species is well-adapted to the current range of temperature in the temperate region of Japan (7–28 °C). However, the combined effects of low temperature and PAR may influence algal photosynthetic efficiency and so may be limiting at the marginal region of northern distribution of this temperate species.


Algae Chilling-light stress Diurnal change Pulse amplitude modulation (PAM)-chlorophyll fluorometry Sargassaceae 



This research was supported in part by the Grant-in-Aid for Scientific Research (#25340012, #25450260, #26241027, and #16H02939) from the Japan Society for the Promotion of Science (JSPS) and the Japanese Ministry of Education, Culture, Sport and Technology (MEXT). All authors have provided consent.

Supplementary material

10811_2017_1344_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb)


  1. Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodriguez E, Conde Álvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465CrossRefGoogle Scholar
  2. Adey WH, Steneck RS (2001) Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698CrossRefGoogle Scholar
  3. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192CrossRefGoogle Scholar
  4. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32CrossRefPubMedGoogle Scholar
  5. Allakhverdiev SI, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosyn Res 98:541–550CrossRefPubMedGoogle Scholar
  6. Baba M (2007) Effects of temperature and irradiance on gerrnling growth in eight Sargassaceous species. Rep Mar Ecol Res Inst 10:9–20 (in Japanese with English Abstract)Google Scholar
  7. Beer S, Björk M, Beardall J (2014) Photosynthesis in the marine environment. 224 p., Wiley-Blackwell, Ames, IowaGoogle Scholar
  8. Bellasio C, Burgess SJ, Griffiths H, Hibberd JM (2014) A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity. J Exp Bot 65:3769–3779CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borlongan IA, Nishihara GN, Shimada S, Terada R (2017) Effects of temperature and PAR on the photosynthesis of Kappaphycus sp. (Solieriaceae, Rhodophyta) from Okinawa, Japan, at the northern limit of native Kappaphycus distribution in the western Pacific. Phycologia 56:444–453CrossRefGoogle Scholar
  10. Cho SM, Lee SM, Ko YD, Mattio L, Boo SM (2012) Molecular systematic reassessment of Sargassum (Fucales, Phaeophyceae) in Korea using four gene regions. Bot Mar 55:473–484CrossRefGoogle Scholar
  11. De Wreede RE (1976) The phenology of three species of Sargassum (Sargassaceae, Phaeophyta) in Hawaii. Phycologia 15:175–183CrossRefGoogle Scholar
  12. De Wreede RE (1978) Phenology of Sargassum muticum (Phaeophyta) in the Strait of Georgia, British Columbia. Syesis 11:l–9Google Scholar
  13. Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 47–66.CrossRefGoogle Scholar
  14. Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618CrossRefGoogle Scholar
  15. Endo H, Suehiro K, Kinoshita J, Gao X, Agatsuma Y (2013) Combined effects of temperature and nutrient availability on growth and phlorotannin concentration of the brown alga Sargassum patens (Fucales; Phaeophyceae). Am J Plant Sci 4:14–20CrossRefGoogle Scholar
  16. Ensminger I, Xylander M, Hagen C, Braune W (2001) Strategies providing success in a variable habitat. III. Dynamic control of photosynthesis in Cladophora glomerata. Plant Cell Environ 24:769–779CrossRefGoogle Scholar
  17. Fairhead VA, Cheshire AC (2004) Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar Biol 145:415–426Google Scholar
  18. Faraway JJ (2016) Extending the linear model with R, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  19. Gao K (1991) Comparative photosynthetic capacities of different parts of Sargassum horneri (Phaeophyta). Jpn. J Phycol 39:245–252Google Scholar
  20. Gao K, Umezaki I (1988) Comparative photosynthetic capacities of the leaves of upper and lower parts of Sargassum plants. Bot Mar 31:231–236CrossRefGoogle Scholar
  21. Gelman A (2004) Parameterization and Bayesian modeling. J Amer Stat Assoc 99:537–545CrossRefGoogle Scholar
  22. Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533CrossRefGoogle Scholar
  23. Gévaert F, Créach A, Davoult D, Migné A, Levavasseur G, Arzel P, Holl AC, Lemoine Y (2003) Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. Mar Ecol Prog Ser 247:43–50CrossRefGoogle Scholar
  24. Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 3–23CrossRefGoogle Scholar
  25. Hanelt D, Huppertz K, Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97:31–37CrossRefGoogle Scholar
  26. Haraguchi H, Murase N, Mizukami Y, Noda M, Yoshida G, Terawaki T (2005) The optimal and maximum critical temperatures of nine species of the Sargassaceae in the coastal waters of Yamaguchi Prefecture, Japan. Jpn J Phycol 53:7–13 (in Japanese with English Abstract)Google Scholar
  27. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photo inhibition and diel changes. J Phycol 29:729–739CrossRefGoogle Scholar
  28. Japan Oceanographic Data Center (2017) JODC Data On-line Service System. (acessed on 24 June 2017; in Japanese)
  29. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  30. Kokubu S, Nishihara GN, Watanabe Y, Tsuchiya Y, Amano Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native brown alga, Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–547CrossRefGoogle Scholar
  31. Martin-Smith KM (1993) The phenology of four species of Sargassum at magnetic island, Australia. Bot Mar 36:327–334CrossRefGoogle Scholar
  32. McCourt RM (1984) Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. J Exp Mar Biol Ecol 74:141–156CrossRefGoogle Scholar
  33. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  34. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL (acessed on 10 May 2017)
  35. Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photsynth Res 113:105–125CrossRefGoogle Scholar
  36. Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photobiol Sci 8:1302–1312CrossRefGoogle Scholar
  37. Rothäusler E, Gömez I, Karsten U, Tala F, Thiel M (2011) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41CrossRefGoogle Scholar
  38. Stan Development Team (2017) Stan: A C++ Library for Probability and Sampling, Version 2.14.2. URL: (acessed on 10 May 2017)
  39. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182CrossRefPubMedGoogle Scholar
  40. Tala F, Penna-Díaz MA, Luna-Jorquera G, Rothäusler E, Thiel M (2017) Daily and seasonal changes of photobiological responses in floating bull kelp Durvillaea antarctica (Chamisso) Hariot (Fucales: Phaeophyceae). Phycologia 56:271–283CrossRefGoogle Scholar
  41. Taniguchi K, Yamada Y (1978) Ecological study on Sargassum patens C. Agardh and S. serratifolium C. Agardh in the sublittoral zone at Iida Bay of Noto Peninsula in the Sea of Japan. Bull J Sea Nat Fish Res Inst 29:239–253 (in Japanese with English Abstract)Google Scholar
  42. Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802CrossRefPubMedPubMedCentralGoogle Scholar
  43. Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016a) Effect of PAR and temperature on the photosynthesis of Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186CrossRefGoogle Scholar
  44. Terada R, Vo TD, Nishihara GN, Matsumoto K, Kokubu S, Watanabe Y, Kawaguchi S (2016b) The effect of PAR and temperature on the photosynthesis of two Vietnamese species of Sargassum, Sargassum mcclurei and Sargassum oligocystum, based on the field and laboratory measurements. Phycol Res 64:230–240CrossRefGoogle Scholar
  45. Terada R, Vo TD, Nishihara GN, Shioya K, Shimada S, Kawaguchi S (2016c) The effect of irradiance and temperature on the photosynthesis and growth of a cultivated red alga Kappaphycus alvarezii (Solieriaceae) from Vietnam, based on in situ and in vitro measurements. J Appl Phycol 28:457–467CrossRefGoogle Scholar
  46. Thornley JHM, Johnson IR (2000) Plant and crop modelling: a mathematical approach to plant and crop physiology. Blackburn Press, Caldwell, New Jersey, 669 ppGoogle Scholar
  47. Titlyanov EA, Titlyanova TV (2012) Marine plants of the Asian Pacific region countries, their use and cultivation. Dalnauka and A.V. Zhirmunsky Institute of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, 376 pp.Google Scholar
  48. Tseng CK, Lu B (2000) Flora algarum marinarum sinicarum Tomus III Phaeophyta No. II Fucales. Science Press, Beijing (in Chinese)Google Scholar
  49. Tsuchiya Y, Sakaguchi Y, Terada R (2011) Phenology and environmental characteristics of four Sargassum species (Fucales): S. piluliferum, S. patens, S. crispifolium, and S. alternato-pinnatum from Sakurajima, Kagoshima Bay, southern Japan. Jpn J Phycol 59:1–8 (in Japanese with English Abstract)Google Scholar
  50. Tsuchiya Y, Nishihara GN, Terada R (2012) Photosynthetic and temperature characteristics of five Sargassum species (Fucales), S. piluliferum, S. patens, S. fusiforme, S. crispifolium and S. alternato-pinnatum from Kagoshima, Japan, using dissolved oxygen sensor and pulse-amplitude-modulated (PAM) fluorometer. Nippon Suisan Gakkaishi 78:189–197 (in Japanese with English Abstract)CrossRefGoogle Scholar
  51. Tsukidate J (1984) On the most suitable growth conditions of young thalli of Sargassum patens C. Agardh and Sargassum tortile C. Agardh. Bull Nansei Reg Fish Res Lab 16:1–9 (in Japanese with English Abstract)Google Scholar
  52. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014a) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415CrossRefGoogle Scholar
  53. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014b) The effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196CrossRefGoogle Scholar
  54. Watanabe Y, Yamada H, Mine Y, Kawamura Y, Nishihara GN, Terada R (2016) Photosynthetic responses of Pyropia yezoensis f. narawaensis (Bangiales, Rhodophyta) to a thermal and PAR gradient vary with the life-history stage. Phycologia 55:665–672CrossRefGoogle Scholar
  55. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291CrossRefPubMedGoogle Scholar
  56. Wing SR, Patterson MR (1993) Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 116:519–525CrossRefGoogle Scholar
  57. Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho, Tokyo (in Japanese)Google Scholar
  58. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GA (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NYCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Faculty of FisheriesKagoshima UniversityKagoshimaJapan
  3. 3.Kobe University Research Center for Inland SeasKobeJapan
  4. 4.Institute for East China Sea Research, Organization for Marine Science and TechnologyNagasaki UniversityNagasakiJapan
  5. 5.Faculty of Core Research, Natural Science DivisionOchanomizu UniversityTokyoJapan

Personalised recommendations