Advertisement

Journal of Applied Phycology

, Volume 30, Issue 3, pp 2047–2060 | Cite as

Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption

  • Pierrick Stévant
  • Hélène Marfaing
  • Arne Duinker
  • Joël Fleurence
  • Turid Rustad
  • Ingrid Sandbakken
  • Annelise Chapman
Article

Abstract

Samples of cultivated edible kelps Alaria esculenta and Saccharina latissima were analysed for their cadmium, iodine and inorganic arsenic contents. The inorganic arsenic levels were low in both species but samples of A. esculenta had relatively high cadmium contents (up to 2.01 mg kg−1 dry weight (DW)), and iodine levels were high in S. latissima samples (up to 6568 mg kg−1 DW), exceeding the limits established by the French food safety authority for both elements. Simple soaking treatments in warm fresh water (32 °C) reduced the iodine in S. latissima and treatment of A. esculenta in hypersaline solution (2.0 M NaCl) reduced the relative cadmium content. However, both treatments affected the nutrient content of the biomass, illustrated by considerable variations in DW and the content of bioactive compounds (e.g. minerals, polyphenols, fucoxanthin). Health risks associated with the consumption of these seaweed species were estimated using risk factors based on established tolerable intake levels. The contribution of A. esculenta to dietary cadmium intake does not appear to pose a threat to the consumer while the daily consumption of S. latissima leads to excessive iodine intakes. The moderate consumption of these kelps will, on the other hand, improve the iodine status in iodine-deficient populations.

Keywords

Bioactive compounds Cadmium Edible seaweeds Iodine Inorganic arsenic Processing 

Notes

Acknowledgements

This work was conducted as part of the PROMAC project (244244), funded by the Research Council of Norway, and as part of the Sustainable Innovation in Food- and Bio-based Industries Programme. Pierrick Stévant was supported by a doctoral fellowship from Sparebanken Møre. Thanks are due to the CEVA’s laboratory and pilot facility staff for valuable technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AFSSA (2009) Avis de l’Agence Française de Sécurité Sanitaire des Aliments relatif à la teneur maximale en arsenic inorganique recommandée pour les algues laminaires et aux modalités de consommation de ces algues compte tenu de leur teneur élevée en iode. vol Saisine no. 2007-SA-0007Google Scholar
  2. Almela C, Clemente MJ, Velez D, Montoro R (2006) Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem Toxicol 44:1901–1908CrossRefPubMedGoogle Scholar
  3. Amorim-Carrilho K, Lage-Yusty MA, López-Hernández J (2014) Variation of bioactive compounds in dried seaweed Himanthalia elongata subjected to different culinary processes. CYTA-J Food 12:336–339CrossRefGoogle Scholar
  4. Andersson M, De Benoist B, Darnton-Hill I, Delange F (2007) Iodine deficiency in Europe: a continuing public health problem. World Health Organization, GenevaGoogle Scholar
  5. Angell AR, Mata L, de Nys R, Paul NA (2016) The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol 28:511–524CrossRefGoogle Scholar
  6. AOAC (2000) Official methods of analysis of AOAC international, 17th edn. Association of Official Analytical Chemistry, Maryland, USAGoogle Scholar
  7. Aquaron R, Delange F, Marchal P, Lognone V, Ninane L (2002) Bioavailability of seaweed iodine in human beings. Cell Molec Biol 48:563–569Google Scholar
  8. Ar Gall E, Küpper FC, Kloareg B (2004) A survey of iodine content in Laminaria digitata. Bot Mar 47:30–37Google Scholar
  9. Besada V, Andrade JM, Schultze F, González JJ (2009) Heavy metals in edible seaweeds commercialised for human consumption. J Mar Syst 75:305–313CrossRefGoogle Scholar
  10. BS EN 15111:2007 (2007) Foodstuffs. Determination of trace elements. Determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry)Google Scholar
  11. BS EN 15517:2008 (2008) Foodstuffs. Determination of trace elements. Determination of inorganic arsenic in seaweed by hydride generation atomic absorption spectrometry (HGAAS) after acid extractionGoogle Scholar
  12. Cabrita ARJ, Maia MRG, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJM (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28:3135–3150CrossRefGoogle Scholar
  13. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454CrossRefPubMedGoogle Scholar
  14. Chapman AS, Stévant P, Emblem Larssen W (2015) Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Bot Mar 58:423–433CrossRefGoogle Scholar
  15. Cheney D (2016) Toxic and harmful seaweeds. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Elsevier, Amsterdam, pp 407–421CrossRefGoogle Scholar
  16. Combet E, Ma ZF, Cousins F, Thompson B, Lean MEJ (2014) Low-level seaweed supplementation improves iodine status in iodine-insufficient women. Br J Nutr 112:753–761CrossRefPubMedGoogle Scholar
  17. Cox S, Gupta S, Abu-Ghannam N (2011) Application of response surface methodology to study the influence of hydrothermal processing on phytochemical constituents of the Irish edible brown seaweed Himanthalia elongata. Bot Mar 54:471–480CrossRefGoogle Scholar
  18. Crawford BA, Cowell CT, Emder PJ, Learoyd DL, Chua EL, Sinn J, Jack MM (2010) Iodine toxicity from soy milk and seaweed ingestion is associated with serious thyroid dysfunction. Med J Aust 193:413–415PubMedGoogle Scholar
  19. CSHPF (1999) Avis du Conseil Supérieur d’Hygiène Publique émis lors des séances du 14 juin 1988, du 13 décembre 1988, du 9 janvier 1990 et du 14 octobre 1997 publié dans le Bulletin Officiel du Ministère de la Santé (n°90/45, p. 103), B.I.D n°2/98-030 et BID n° 4/99-079Google Scholar
  20. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330CrossRefPubMedGoogle Scholar
  21. Dawczynski C, Schubert R, Jahreis G (2007a) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  22. Dawczynski C, Schäfer U, Leiterer M, Jahreis G (2007b) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem 55:10470–10475CrossRefPubMedGoogle Scholar
  23. Déléris P, Nazih H, Bard JM (2016) Seaweeds in human health. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Elsevier, Amsterdam, pp 319–367CrossRefGoogle Scholar
  24. Desideri D, Cantaluppi C, Ceccotto F, Meli MA, Roselli C, Feduzi L (2016) Essential and toxic elements in seaweeds for human consumption. J Toxicol Environ Health A 79:112–122CrossRefPubMedGoogle Scholar
  25. Diaz O, Tapia Y, Munoz O, Montoro R, Velez D, Almela C (2012) Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food Chem Toxicol 50:744–749CrossRefPubMedGoogle Scholar
  26. EFSA (2006) Tolerable upper intake levels for vitamins and minerals. Scientific committee on food, scientific panel on dietetic products, nutrition and allergies, European Food Safety AuthorityGoogle Scholar
  27. EFSA (2012) Cadmium dietary exposure in the European population. EFSA J 10(1):2551 https://www.efsa.europa.eu/en/efsajournal/pub/2551 CrossRefGoogle Scholar
  28. EFSA (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12(3):3597 https://www.efsa.europa.eu/en/efsajournal/pub/3597 Google Scholar
  29. EFSA CONTAM Panel (2009) Scientific opinion on arsenic in food. EFSA J 7(10):1351 https://www.efsa.europa.eu/en/efsajournal/pub/1351 CrossRefGoogle Scholar
  30. Engel DW, Fowler BA (1979) Factors influencing cadmium accumulation and its toxicity to marine organisms. Environ Health Perspect 28:81–88CrossRefPubMedPubMedCentralGoogle Scholar
  31. EU No 488/2014 (2014) Commission regulation (EU) no 488/2014 of 12 may 2014 amending regulation (EC) no 1881/2006 as regards maximum levels of cadmium in foodstuffs. EU No 488/2014. Official Journal of the European CommunitiesGoogle Scholar
  32. Fleurence J (2004) Seaweed proteins. In: Yada R (ed) Proteins in food processing. Woodhead Publishing, Cambridge, pp 197–213CrossRefGoogle Scholar
  33. Fleurence J, Ar Gall E (2016) Antiallergic properties. In: Fleurance J, Levine I (eds) Seaweed in health and disease prevention. Elsevier, Amsterdam, pp 389–406CrossRefGoogle Scholar
  34. Fung A, Hamid N, Lu J (2013) Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136:1055–1062CrossRefPubMedGoogle Scholar
  35. Girolami A, Napolitano F, Faraone D, Braghieri A (2013) Measurement of meat color using a computer vision system. Meat Sci 93:111–118CrossRefPubMedGoogle Scholar
  36. Hanaoka K, Yosida K, Tamano M, Kuroiwa T, Kaise T, Maeda S (2001) Arsenic in the prepared edible brown alga hijiki, Hizikia fusiforme. Appl Organomet Chem 15:561–565CrossRefGoogle Scholar
  37. Handå A, Forbord S, Wang X, Broch OJ, Dahle SW, Størseth TR, Reitan KI, Olsen Y, Skjermo J (2013) Seasonal- and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture 414-415:191–201CrossRefGoogle Scholar
  38. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  39. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  40. Hou X, Chai C, Qian Q, Yan X, Fan X (1997) Determination of chemical species of iodine in some seaweeds (I). Sci Total Environ 204:215–221CrossRefGoogle Scholar
  41. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16CrossRefPubMedGoogle Scholar
  42. Inui S, Tsujimoto N, Toda N, Itami S (2010) Suppression of thyroid function by seaweed “Kombu”(Laminaria japonica) supplement seen in a patient with alopecia areata: a case report. Open Dermatol J 4:108–109CrossRefGoogle Scholar
  43. Järup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17(Suppl 2):35–39CrossRefPubMedGoogle Scholar
  44. Katayama M, Sugawa-Katayama Y, Murakami K (2015) Pre-cooking of edible marine brown algae for reduction of arsenic contents. J Food Nutr Sci 3:84–87Google Scholar
  45. Kraan S, Verges Tramullas A, Guiry M (2000) The edible brown seaweed Alaria esculenta (Pheophyceae, Laminariales) hybridization growthand genetic comparisons of six Irish populations. J Appl Phycol 12:577–583CrossRefGoogle Scholar
  46. Küpper FC, Schweigert N, Ar Gall E, Legendre JM, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171CrossRefGoogle Scholar
  47. Le Bras Q, Ritter L, Fasquel D, Lesueur M, Lucas S, Gouin S (2014) Etude de la consommation des algues alimentaires en France. Etude nationale, vol 35. Les publications du Pôle halieutique AGROCAMPUS OUEST, http://www.idealg.ueb.eu/digitalAssets/72/72069_N_35.pdf
  48. Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10:136–142CrossRefPubMedGoogle Scholar
  49. Lüning K, Mortensen LM (2015) European aquaculture of sugar kelp (Saccharina latissima) for food industries: iodine content and epiphytic animals as major problems. Bot Mar 58:449–455CrossRefGoogle Scholar
  50. Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107CrossRefGoogle Scholar
  51. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543CrossRefPubMedGoogle Scholar
  52. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397CrossRefPubMedGoogle Scholar
  53. Maeda H, Tsukui T, Sashima T, Hosokawa M, Miyashita K (2008) Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 17(S1):196–199PubMedGoogle Scholar
  54. Mæhre HK, Malde MK, Eilertsen KE, Elvevoll EO (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290CrossRefPubMedGoogle Scholar
  55. Michikawa T, Inoue M, Shimazu T, Sawada N, Iwasaki M, Sasazuki S, Yamaji T, Tsugane S (2012) Seaweed consumption and the risk of thyroid cancer in women: the Japan Public Health Center-based Prospective Study. Eur J Cancer Prev 21:254–260CrossRefPubMedGoogle Scholar
  56. Miyai K, Tokushige T, Kondo M (2008) Suppression of thyroid function during ingestion of seaweed “kombu” (Laminaria japonica) in normal Japanese adults. Endocr J 55:1103–1108CrossRefPubMedGoogle Scholar
  57. Mouritsen OG (2013) Seaweed: edible, available and sustainable. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  58. Mouritsen OG (2017) Those tasty weeds. J Appl Phycol 29:2159–2164CrossRefGoogle Scholar
  59. Nisizawa K, Noda H, Kikuchi R, Watanabe T (1987) The main seaweed foods in Japan. In: Ragan MA, Bird CJ (eds) Twelfth International Seaweed Symposium: Proceedings of the Twelfth International Seaweed Symposium held in Sao Paulo, Brazil, July 27–August 1, 1986. Springer Netherlands, Dordrecht, pp 5–29CrossRefGoogle Scholar
  60. Nitschke U, Stengel DB (2016) Quantification of iodine loss in edible Irish seaweeds during processing. J Appl Phycol 28:3527–3533CrossRefGoogle Scholar
  61. Pennington JA (1990) A review of iodine toxicity reports. J Amer Diet Assoc 90:1571–1581Google Scholar
  62. Phaneuf D, Côté I, Dumas P, Ferron LA, LeBlanc A (1999) Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environ Res 80:S175–S182CrossRefPubMedGoogle Scholar
  63. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1–131, https://CRAN.R-project.org/package=nlme
  64. Quemener B, Marot C, Mouillet L, Da Riz V, Diris J (2000) Quantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC. Part 1. Gelling carrageenans. Food Hydrocoll 14:9–17CrossRefGoogle Scholar
  65. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  66. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:130–230Google Scholar
  67. Rose M, Lewis J, Langford N, Baxter M, Origgi S, Barber M, MacBain H, Thomas K (2007) Arsenic in seaweed-forms, concentration and dietary exposure. Food Chem Toxicol 45:1263–1267CrossRefPubMedGoogle Scholar
  68. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26CrossRefGoogle Scholar
  69. Rupérez P, Saura-Calixto F (2001) Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur Food Res Technol 212:349–354CrossRefGoogle Scholar
  70. Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444CrossRefGoogle Scholar
  71. Stévant P, Marfaing H, Rustad T, Sandbakken I, Fleurence J, Chapman A (2017) Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. J Appl Phycol 29:2417–2426CrossRefGoogle Scholar
  72. Stirk WA, van Staden J (2000) Removal of heavy metals from solution using dried brown seaweed material. Bot Mar 43:467–473CrossRefGoogle Scholar
  73. Stirk WA, van Staden J (2002) Desorption of cadmium and the reuse of brown seaweed derived products as biosorbents. Bot Mar 45:9–16CrossRefGoogle Scholar
  74. Sugawa-Katayama Y, Katayama M (2007) Release of minerals from dried Hijiki, Sargassum fusiforme (Harvey) Setchell, during water-soaking. Trace Nutr Res 24:106–109Google Scholar
  75. Teas J, Pino S, Critchley A, Braverman LE (2004) Variability of iodine content in common commercially available edible seaweeds. Thyroid 14:836–841CrossRefPubMedGoogle Scholar
  76. Wang T, Jónsdóttir R, Kristinsson HG, Thorkelsson G, Jacobsen C, Hamaguchi PY, Ólafsdóttir G (2010) Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chem 123:321–330CrossRefGoogle Scholar
  77. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982CrossRefPubMedGoogle Scholar
  78. WHO (1989) Evaluation of certain contaminants in food: thirty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Reports Series, nr 776Google Scholar
  79. WHO (2010) Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx. Accessed 15.06.2017
  80. WHO (2013) Evaluation of certain food additives and contaminants: seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, nr 983Google Scholar
  81. Yam KL, Papadakis SE (2004) A simple digital imaging method for measuring and analyzing color of food surfaces. J Food Eng 61:137–142CrossRefGoogle Scholar
  82. Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4:14–14CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Møreforsking Ålesund ASÅlesundNorway
  2. 2.Norwegian University of Science and Technology NTNUTrondheimNorway
  3. 3.CEVA (Centre d’Etude et de Valorisation des Algues)PleubianFrance
  4. 4.National Institute of Nutrition and Seafood Research (NIFES)BergenNorway
  5. 5.Mer Molécule Santé, EA2160Université de NantesNantesFrance
  6. 6.Materials and ChemistrySINTEFTrondheimNorway

Personalised recommendations