Skip to main content
Log in

Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under different storage conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Aquaculture provides half of the fish for human consumption, and the trend is on a significant rise over the coming decades. However, the soaring price of traditional ingredients used in aquafeeds is becoming prohibitive, especially in the case of capture fishery derivatives. Therefore, new alternative ingredients and additives are required in order to substitute fish meal and fish oil in aquaculture feeds. Microalgae are a reliable alternative to these as they are potential stabilizing agents against nutrient oxidation. In the present study, three experimental aquafeeds were elaborated with 15% microalgae biomass (Isochrysis galbana, Nannochloropsis gaditana, and Scenedesmus almeriensis); these were then stored under different temperature and light conditions for 15 months in order to analyze the stability of proteins, lipids, fatty acids, and carotenoids. The antioxidant activity of the natural pigments present in microalgae allowed frozen microalgae-based aquafeeds to maintain stable quality over 9 months of storage. Nannochloropsis- and Isochrysis-supplemented feeds had higher eicosapentaenoic and docosahexaenoic acid contents than the microalgae-free control feed. However, longer storage times led to a drop in protein and carotenoid levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves Martins D, Alfonso LO, Hosoya S, Lewis-McCrea LM, Valente LM, Lall SP (2007) Effects of moderately oxidized dietary lipid and the role of vitamin E on the stress response in Atlantic halibut (Hippoglossus hippoglossus L.) Aquaculture 272:573–580

    Article  CAS  Google Scholar 

  • Aryee ANA, Simpson BK, Phillip LE, Cue RI (2012) Effect of temperature and time on the stability of salmon skin oil during storage. J Am Oil Chem Soc 89:287–292

    Article  CAS  Google Scholar 

  • Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173

    Article  Google Scholar 

  • Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440

    Article  PubMed  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, Fernández-Sevilla JM, Molina-Grima E (2015) The influence of culture conditions on biomass and high value product generation by Nannochloropsis gaditana in aquaculture. Algal Res 11:63–73

    Article  Google Scholar 

  • Cerón MC, García-Malea MC, Rivas J, Acién FG, Fernández JM, Del Río E, Guerrero MG, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112–1119

    Article  PubMed  Google Scholar 

  • Cowey CB (1994) Review: Amino acid requirements of fish: a critical appraisal of present values. Aquaculture 124:1–11

    Article  CAS  Google Scholar 

  • De la Higuera M, Cardenete G (1993) La proteína en la nutrición de los peces. In: Castello Orvay F (ed) Acuicultura marina: fundamentos biológicos y tecnología de la producción. Universidad de Barcelona, Barcelona, pp 195–226

    Google Scholar 

  • FAO (C) (2014) The state of world fisheries and aquaculture. http://fao.org/2/sofia14e

  • Fernandes TJR, Alves RC, Souza T, Silva JMG, Castro-Cunha M, Valente LMP (2012) Lipid content and fatty acid profile of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles as affected by feed containing different amounts of plant protein sources. Food Chem 134:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Ferrari CC, Marconi Germer SP, Alvim ID, de Aguirre J (2013) Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technol 31:470–478

    Article  CAS  Google Scholar 

  • Gandía-Herrero F, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Escribano J (2010) Stabilization of the bioactive pigments of Opuntia fruits through maltodextrin encapsulation. J Agric Food Chem 58:10646–10652

    Article  PubMed  Google Scholar 

  • González-López CV, Cerón MC, Acién FG, Segovia C, Chisti Y, Fernández JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  Google Scholar 

  • Gouveia L, Empis J (2003) Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innovative Food Sci Emerg Technol 4:227–233

    Article  CAS  Google Scholar 

  • Güroy D, Güroy B, Merrifield DL, Ergün S, Tekinay AA, Yiğit M (2011) Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period. J Anim Physiol Anim Nutr 95:320–327

    Article  Google Scholar 

  • Hamre K, Kolås K, Sandnes K (2010) Protection of fish feed, made directly from marine raw materials, with natural antioxidants. Food Chem 119:270–278

    Article  CAS  Google Scholar 

  • Hernández A, García García B, Jordán MJ, Hernández MD (2014) Natural antioxidants in extruded fish feed: protection at different storage temperatures. Anim Feed Sci Technol 195:112–119

    Article  Google Scholar 

  • Ito N, Fukushima S, Tsuda H (1985) Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit Rev Toxicol 15:109–150

    Article  PubMed  Google Scholar 

  • Kochert G (1978) Quantitation of the macromolecular components of microalgae. In: Hellebust J, Craigie JS (eds) Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge, pp 189–195

    Google Scholar 

  • Li Y, Xiao G, Mangott A, Kent M, Pirozzi I (2015) Nutrient efficacy of microalgae as aquafeed additives for the adult black tiger prawn, Penaeus monodon. Aquac Res 47:3625–3635

    Article  Google Scholar 

  • Lundebye AK, Hove H, Måge A, Bohne VJB, Hamre K (2010) Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytolueneand butylatedhydroxianisole) in fish feed and commercially farmed fish. Food Addit Contam 27:1652–1657

    Article  CAS  Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol A 148:382–392

    Article  Google Scholar 

  • Montero D, Benitez-Dorta V, Caballero MJ, Ponce M, Torrecillas S, Izquierdo M, Zamorano MJ, Manchado M (2015) Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. Fish Shellfish Immunol 44:100–108

    Article  CAS  PubMed  Google Scholar 

  • Mourente G, Díaz-Salvago E, Bell JG, Tocher DR (2002) Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture 214:343–361

    Article  CAS  Google Scholar 

  • Müller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • New MB (2001) The European aquafeed industry, part II. Fish Farmer 24(5):46–48

    Google Scholar 

  • Pereira TG, Oliva-Teles A (2003) Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquacult Res 34:1111-1117

  • Pereira R, Valente LMP, Sousa-Pinto I, Rema P (2012) Apparent nutrient digestibility of seaweeds by rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Algal Res 1:77–82

    Article  CAS  Google Scholar 

  • Rodríguez-Ruíz J, Belarbi E, Sánchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691

    Article  Google Scholar 

  • Roy SS, Pal S (2015) Microalgae in aquaculture: a review with special emphasis to nutritional value and fish dietetics. Proc Zool Soc 68:1–8

    Article  Google Scholar 

  • Ryckebosch E, Bruneel C, Lemahieu C, Muylaert K, Van Durme J, Goiris K, Foubert I (2013) Stability of omega-3 LC-PUFA-rich protoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils. J Agric Food Chem 61:10145–10155

    Article  CAS  PubMed  Google Scholar 

  • Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405

    Article  Google Scholar 

  • Sarker PK, Kapuscinski AR, Lanois AJ, Livesey ED, Bernhard KP, Coley ML (2016) Towards sustainable aquafeeds: complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PLoS One 11(6):e0156684

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva FCP, Nicoli JR, Zambonino-Infante JL, Le Gall M, Kaushik S, Gatesoupe FJ (2010) Influence of partial substitution of dietary fishmeal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, Sparus aurata and goldfish, Carassius auratus. Aquaculture 306:233–237

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Tibaldi E, Chini Zittelli G, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015) Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 440:60–68

    Article  CAS  Google Scholar 

  • Vizcaíno AJ, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF, Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as a fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431:34–43

    Article  Google Scholar 

  • Vizcaíno AJ, Sáez MI, López G, Arizcun M, Abellán E, Martínez TF, Cerón-García MC, Alarcón FJ (2016) Tetraselmis suecica and Tisochrysis lutea meal as dietary ingredients for gilthead sea bream (Sparus aurata L.) fry. J Appl Phycol 28:2843–2855

    Article  Google Scholar 

  • Walker AB, Berlinsky DL (2011) Effects of partial replacement of fishmeal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquac 73:76–83

    Google Scholar 

Download references

Acknowledgements

Experimental feeds were made at the Universidad de Almería facilities (Experimental Diets Service; http://www.ual.es/stecnicos_spe).

Funding

This work was supported by grant AGR-5334 and the European Regional Development Fund (ERDF and SABANA (grant no. 727874) from the European Union’s Horizon 2020 Research and Innovation program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Cerón-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Rodríguez, J., Macías-Sánchez, M.D., Cerón-García, M.C. et al. Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under different storage conditions. J Appl Phycol 30, 1049–1059 (2018). https://doi.org/10.1007/s10811-017-1281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1281-5

Keywords

Navigation