Advertisement

Journal of Applied Phycology

, Volume 30, Issue 2, pp 839–850 | Cite as

Distribution of alkaline phosphatase genes in cyanobacteria and the role of alkaline phosphatase on the acquisition of phosphorus from dissolved organic phosphorus for cyanobacterial growth

  • Weitie Lin
  • Dandan Zhao
  • Jianfei Luo
Article

Abstract

Phosphorus is a vital nutrient for cyanobacterial growth. Aside from dissolved inorganic phosphorus, dissolved organic phosphorus (DOP) is used by cyanobacterial species via the activity of alkaline phosphatase (APase), which likely plays an important role in acquiring phosphorus for algal growth in the same manner as it does in other bacteria. In this work, APase genes phoA, phoD, and phoX were found distributed in the cyanobacterial strains included in the algal genome collection of the NCBI database. PhoX has a wider distribution than the classical phoA and phoD. Furthermore, multiple types of APase genes were simultaneously identified in a single strain or genome. Anabaena flos-aquae FACHB-245 was selected as a typical strain to study the performance of cyanobacteria growing on DOP. In algal growth involving AMP or lecithin, APase regulates the release of phosphorus from DOP as confirmed by the relative quantification of phoD and phoX expression levels. Our results confirmed that the distribution of APase is prevalent in cyanobacteria and thus provides a new insight into the potential role of cyanobacterial APase on phosphorus acquisition in natural environment.

Keywords

Alkaline phosphatase Cyanobacteria Dissolved organic phosphorus Distribution 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21276099, No. 41301318, No. 41473072), the Specialized Research Found for the Doctoral Program of Higher Education of China (No. 20120172120045), and the Fundamental Research Funds for the Central Universities (No. 2015ZM171).

References

  1. Adams MM, Gomez-Garcia MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp from microbial mats. J Bacteriol 190:8171–8184CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai F, Liu R, Yang YJ, Ran XF, Shi JQ, Wu ZX (2014) Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae 39:112–120CrossRefGoogle Scholar
  3. Boulanger RR, Kantrowitz ER (2003) Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. J Biol Chem 278:23497–23501CrossRefPubMedGoogle Scholar
  4. Chung CC, Hwang SPL, Chang J (2013) Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl Environ Microbiol 69:754–759CrossRefGoogle Scholar
  5. Cox AD, Saito MA (2013) Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Front Microbiol 4:387PubMedPubMedCentralGoogle Scholar
  6. Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol 77:5178–5183CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kathuria S, Martiny AC (2011) Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol 13:74–83CrossRefPubMedGoogle Scholar
  8. Lin X, Wang L, Shi X, Lin S (2015) Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases. Front Microbiol 6:868PubMedPubMedCentralGoogle Scholar
  9. Liu Z, Wu C (2012) Response of alkaline phosphatases in the cyanobacterium Anabaena sp FACHB 709 to inorganic phosphate starvation. Curr Microbiol 64:524–529CrossRefPubMedGoogle Scholar
  10. Luo H, Benner R, Long RA, Hu J (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci 106:21219–21223CrossRefPubMedPubMedCentralGoogle Scholar
  11. Luo JF, Lin WT, Guo Y (2010) Method to detect only viable cells in microbial ecology. Appl Microbiol Biotechnol 86:377–384CrossRefPubMedGoogle Scholar
  12. Munoz-Martin MA, Mateo P, Leganes F, Fernandez-Pinas F (2011) Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp PCC 7120. Anal Bioanal Chem 400:3573–3584CrossRefPubMedGoogle Scholar
  13. Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR (2017) Land-use influences phosphatase gene microdiversity in soils. Environ Microbiol.  https://doi.org/10.1111/1462-292013778
  14. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745CrossRefPubMedGoogle Scholar
  15. Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol 81:7281–7289CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ragot SA, Kertesz MA, Meszaros E, Frossard E, Bünemann EK (2017) Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol 93:fiw212CrossRefPubMedGoogle Scholar
  17. Ray JM, Bhaya D, Block MA, Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp strain PCC 7942. J Bacteriol 173:4297–4309CrossRefPubMedPubMedCentralGoogle Scholar
  18. Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate hybrid oligonucleotide primer) PCR primer design. Nucl Acids Res 31:3763–3766Google Scholar
  19. Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME 3:563–572CrossRefGoogle Scholar
  20. Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci 105:2510–2515CrossRefPubMedPubMedCentralGoogle Scholar
  21. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedPubMedCentralGoogle Scholar
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  23. Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2012) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672CrossRefGoogle Scholar
  24. Wagner KU, Masepohl B, Pistorius E (1995) The cyanobacterium Synechococcus sp strain PCC 7942 contains a second alkaline phosphatase encoded by phoV. Microbiology 141:3049–3058CrossRefPubMedGoogle Scholar
  25. White AE (2009) New insights into bacterial acquisition of phosphorus in the surface ocean. Proc Natl Acad Sci 106:21013–21014CrossRefPubMedPubMedCentralGoogle Scholar
  26. Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM (2009) Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Environ Microbiol 11:1572–1587CrossRefPubMedGoogle Scholar
  27. Zhang F, Wang R, Wang L, Wu J, Ying Y (2014) Tracing phosphate irons generated during DNA amplification and its simple use for visual detection of isothermal amplified products. Chem Commun 50:14382–14385CrossRefGoogle Scholar
  28. Zhao G, Du J, Jia Y, Lv Y, Han G, Tian X (2012) The importance of bacteria in promoting algal growth in eutrophic lakes with limited available phosphorus. Ecol Eng 42:107–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations