Journal of Applied Phycology

, Volume 29, Issue 6, pp 3151–3159 | Cite as

Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf

  • Kiana Pirian
  • Soheila Moein
  • Jelveh Sohrabipour
  • Reza Rabiei
  • Jaanika Blomster


The inhibition of pancreatic α-amylase and the prevention of pancreatic oxidative damage are considered possible strategies for the management of type 2 diabetes. The aim of our study was to evaluate in vitro the antioxidant properties and α-amylase inhibition of ten brown and red macroalgal species from the Persian Gulf. The α-amylase inhibition was tested using the chromogenic dinitrosalicylic acid (DNS) method, and the antioxidant properties were evaluated using the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) radical scavenging and ferric reducing antioxidant power (FRAP) methods. The results of our study showed that all analyzed macroalgal species revealed antioxidant effects and α-amylase inhibitory activities. Among the studied species, the highest α-amylase inhibition was shown by the brown algae Sirophysalis trinodis (IC50 0.42 mg mL−1, 32–97% inhibition), Polycladia myrica (IC50 = 0.72 mg mL−1, 32–97% inhibition), and the red alga Palisada perforata (IC50 = 1.1 mg mL−1, 27–91%). Sirophysalis trinodis (125.4 μg ASA mg−1) and Sargassum angustifolium (IC50 = 0.40 mg mL−1) had the highest FRAP-reducing power and ABTS radical scavenging activities, respectively. In addition to the species, α-amylase inhibition and the antioxidant effects depended on the type of solvent used for algal extraction; the best properties were generally presented by methanol and ethyl acetate. In conclusion, the enzyme inhibition and antioxidant activities of S. trinodis, P. myrica, P. perforata, and S. angustifolium suggest that they may have potential for antidiabetic and antioxidant use and could therefore be studied further for potential pharmaceutical use.


α-amylase inhibition ABTS radical scavenging Diabetes mellitus FRAP method Macroalgae Persian Gulf 


  1. Amin KA, Nagy MA (2009) Effect of carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabet Metabol Syndr 16:1–17Google Scholar
  2. Anggadiredja J, Andyani R, Hayati M (1997) Antioxidant activity of Sargassum polycystum (Phaeophyta) and Laurencia obtusa (Rhodophyta) from Seribu Islands. J Appl Phycol 9:477–479CrossRefGoogle Scholar
  3. Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total anti-oxidant activity. Food Chem 73:239–244CrossRefGoogle Scholar
  4. Athukorala Y, Kim KN, Jeon YJ (2006) Anti proliferative and antioxidant properties of an enzymatic hydro-lysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074CrossRefPubMedGoogle Scholar
  5. Balasubramaniam V, Lee JC, Noh MFM, Ahmad S, Brownlee IA, Ismail A (2016) Alpha-amylase, antioxidant and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey. J Appl Phycol 28:1965CrossRefGoogle Scholar
  6. Bayens JW, Thorpe SR (1999) Role of oxidative stress in diabetic complication: a new perspective on an old paradigm. Diabetes 48:1–9CrossRefGoogle Scholar
  7. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76CrossRefPubMedGoogle Scholar
  8. Blunt JW, Coop BR, Munro MH, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268CrossRefPubMedGoogle Scholar
  9. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:122–144Google Scholar
  10. Burton GW, Ingold KU (1999) Mechanisms of antioxidant action: preventive and chain breaking antioxidants. In: Miguel A, Quintanilha AT, Weber H (eds) CRC handbook of free radicals and antioxidants in biomedicine, vol II. CRC Press, Boca Raton, pp 29–43Google Scholar
  11. Campbell RK, White JR, Saulie BA (1996) Metformin: a new oral biguanide. Clin Therapeut 18:360–371CrossRefGoogle Scholar
  12. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Review: metabolites from algae with economical impact. Comp Biochem Physiol 146:60–78CrossRefGoogle Scholar
  13. Chakraborty S, Bhattacharya T (2012) Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India. J Algal Biomass Utln 3:32–38Google Scholar
  14. Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:34–46CrossRefGoogle Scholar
  15. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae. Algae 25:155–171CrossRefGoogle Scholar
  16. Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, Kim D, Jung JH (2008) Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod 71:232–240CrossRefPubMedGoogle Scholar
  17. Demirel Z, Yilmaz-Koz FF, Karabay_Yavasoglu NU, Ozdemir G, Sukatar A (2011) Antimicrobial and antioxidant activities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. pyramidata. Rom Biotechnol Lett 16:5927–5936Google Scholar
  18. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon J-M (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774CrossRefPubMedGoogle Scholar
  19. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant theory in Parkinson’s disease. Prog Neurobiol 48:1–19CrossRefPubMedGoogle Scholar
  20. Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–49PubMedGoogle Scholar
  21. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefPubMedGoogle Scholar
  22. Freidovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:1–13CrossRefGoogle Scholar
  23. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975CrossRefPubMedGoogle Scholar
  24. Gray GM (1975) Carbohydrate digestion and absorption—role of the small intestine. New Engl J Med 292:1225–1230CrossRefPubMedGoogle Scholar
  25. Gülçin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391CrossRefPubMedGoogle Scholar
  26. Hansawasdi C, Kawabata J, Kasai T (2000) α-amylase inhibition from Roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biochem 64:1041–1043CrossRefGoogle Scholar
  27. Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623CrossRefPubMedGoogle Scholar
  28. Jan S, Khan MR, Rashid U, Bokhari J (2013) Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect 4:246–254CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R (2013) Biological activity and chemical constituents of red and brown algae from the Persian Gulf. Iranian J Pharmaceut Res 12(3):339–348Google Scholar
  30. Jenner P, Olnaw CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(Suppl):S161–S176CrossRefPubMedGoogle Scholar
  31. Kamenarska Z, Serkedjieva J, Najdenski H, Stefanov K, Tsvetkova I, Dimitrova-Konaklieva S, Popov S (2009) Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black Sea. Bot Mar 52:80–86CrossRefGoogle Scholar
  32. Karawita R, Siriwardhana N, Lee KW, Heo MS, Yeo IK, Lee YD, Jeon YJ (2005) Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur Food Res Technol 220:363–371CrossRefGoogle Scholar
  33. Kelman D, Kromkowski PE, McDermid JK, Tabandera KN, Wright PR, Wright DA (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10:403–416CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim SJ, Woo S, Yun H, Yum S, Choi E, Do JR, Jo JH, Kim D, Lee S, Lee TK (2005) Total phenolic contents and biological activities of Korean seaweed extracts. Food Sci Biotech 14:798–802Google Scholar
  35. Kokabi M, Yousefzadi M, Ali Ahmadi A, Feghhi MA, Keshavarz M (2011) Antioxidant activity of extracts of selected algae from the Persian Gulf, Iran. J Persian Gulf (Mar Sci) 4(12):45–50Google Scholar
  36. Krentz AJ, Baile CJ (2005) Oral anti-diabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411CrossRefPubMedGoogle Scholar
  37. Kwon YI, Apostolidis E, Shetty K (2008) Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem 32:15–31CrossRefGoogle Scholar
  38. Lee S-H, Jeon Y-J (2013) Review: anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136CrossRefPubMedGoogle Scholar
  39. Lee S-H, Athukorala Y, Lee J-S, Jeon Y-J (2008) Simple separation of anticoagulant sulfated galactan from marine red algae. J Appl Phycol 20:1051–1059CrossRefGoogle Scholar
  40. Lee SH, Li Y, Karadeniz F, Kim MM, Kim SK (2009) α-glucosidase and α-amylase inhibitory activities of phloroglucinol derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 89:1552–1558CrossRefGoogle Scholar
  41. Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866CrossRefPubMedGoogle Scholar
  42. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35CrossRefGoogle Scholar
  43. Mellor KM, Ritchie RH, Delbridge LM (2010) Reactive oxygen species and insulin-resistant cardiomyopathy. Clin Exp Pharmacol Physiol 37:222–228CrossRefPubMedGoogle Scholar
  44. Mole M, Anjali S (2015) Antibacterial and antioxidant potential of Ulva and Ectocarpus. Indian J Appl Res 5(5):722–725Google Scholar
  45. Mori J, Matsunaga T, Takahashi S, Hasegawa C, Saito H (2003) Inhibitory activity on lipid peroxidation of extracts from marine brown alga. Phytother Res 17:549–551CrossRefPubMedGoogle Scholar
  46. Movahedinian A, Heydari M (2012) Antioxidant activity and total phenolic content in two alga species from the Persian Gulf in Bushehr Province, Iran. Int J Sci Res 3:954–958Google Scholar
  47. Nagarani N, Kumaraguru AK (2013) Evaluation of anti-inflammatory, anti-diabetic, cytotoxic activity of Kappaphycus alvarezii. Int J Pharm Biol Sci 4:495–503Google Scholar
  48. Nagy MA, Ewais MM (2014) Anti-diabetic and antioxidative potential of Cystoseira myrica. Am J Biochem 4:59–67Google Scholar
  49. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126:1006–1012CrossRefGoogle Scholar
  50. Park PJ, Heo SJ, Park EJ, Kim SK, Byun HG, Jeon BT, Jeon YJ (2005) Reactive oxygen effect of enzymatic extracts from Sargassum thunbergii. J Agric Food Chem 53:6666–6672CrossRefPubMedGoogle Scholar
  51. Pietta P, Simonetti P, Mauri P (1998) Antioxidant activity of selected medicinal plants. J Agric Food Chem 46:4487–4490CrossRefGoogle Scholar
  52. Rengasamy KR, Aderogba M, Amoo S, Strike W, Van Staden J (2014) Macrocystis angustifolia is a potential source of enzyme inhibitors linked to type 2 diabetes and dementia. J Appl Phycol 26:1557–1563CrossRefGoogle Scholar
  53. Reuser AJ, Wisselaar HA (1994) An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Eur J Clin Investig 24:19–24CrossRefGoogle Scholar
  54. Rhabasa-Lhoret R, Chiasson JL (2004) α-Glucosidase inhibitors. In: Defronzo RA, Ferrannini E, Keen H, Zimmet PUK (eds) International textbook of diabetes mellitus. John Wiley & Sons Ltd., London, pp 901–914Google Scholar
  55. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–158CrossRefGoogle Scholar
  56. Sadati N, Khanavi M, Mahrokh A, Nabavi SMB, Sohrabipour J, Hadjiakhoondi A (2011) Comparison of antioxidant activity and total phenolic contents of some Persian Gulf marine algae. J Med Plants 10:73–79Google Scholar
  57. Santoso J, Yoshie-Stark Y, Suzuki T (2004) Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish Sci 70:183–188CrossRefGoogle Scholar
  58. Senthil SL, Kumar TV, Geetharamani D, Maruthupandi T (2013) Screening of seaweeds collected from southeast coastal area of India for α-amylase inhibitory activity, antioxidant activity and biocompatibility. Int J Pharm Pharmaceut Sci 5(Suppl 1):240–244Google Scholar
  59. SenthilKumar P, Sudha S (2012) Evaluation of alpha-amylase and alpha-glucosidase inhibitory properties of selected seaweeds from Gulf of Mannar. Int Res J Pharm 3:128–130Google Scholar
  60. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106CrossRefPubMedGoogle Scholar
  61. Siriwardhana N, Lee KW, Kim SH, Ha JH, Jeon YJ (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346CrossRefGoogle Scholar
  62. Sohrabipour J, Rabiei R (1999) A list of marine algae of sea shores of the Persian Gulf and Oman Sea in the Hormozgan province. Iranian J Bot 8:131–162Google Scholar
  63. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608Google Scholar
  64. Taskin E, Caki Z, Ozturk M, Taskin E (2010) Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. Afr J Biotechnol 9:4272–4277Google Scholar
  65. Tiwari AK (2001) Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidant therapy. Curr Sci 81:1179–1187Google Scholar
  66. Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511CrossRefGoogle Scholar
  67. Yan XJ, Nagata T, Fan X (1998) Antioxidative activities in some seaweeds. Plant Foods Hum Nutr 52:253–262CrossRefPubMedGoogle Scholar
  68. Yun-Zhong F, Sheng Y, Wu G (2002) Free radicals antioxidants and nutrition. Nutrition 18:827–879Google Scholar
  69. Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan peninsula, Mexico. J Appl Phycol 19:449–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kiana Pirian
    • 1
  • Soheila Moein
    • 1
    • 2
  • Jelveh Sohrabipour
    • 3
  • Reza Rabiei
    • 3
  • Jaanika Blomster
    • 4
  1. 1.Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical ScienceBandar AbbasIran
  2. 2.Department of Biochemistry, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
  3. 3.Department of Plant SystematicsAgriculture and Natural Resources Researches Center of HormozganBandar AbbasIran
  4. 4.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations