Journal of Applied Phycology

, Volume 29, Issue 5, pp 2399–2406 | Cite as

Nutritional properties of dishes prepared with sub-Antarctic macroalgae—an opportunity for healthy eating

  • Ma. S. Astorga-EspañaEmail author
  • A. Mansilla
  • J. Ojeda
  • J. Marambio
  • S. Rosenfeld
  • F. Mendez
  • J. P. Rodriguez
  • P. Ocaranza


In order to promote the use of sub-Antarctic macroalgae as food, three species of seaweeds, Macrocystis pyrifera, Pyropia columbina, and Durvillaea antarctica, were used as ingredients in a variety of dishes such as cochayuyo bread, cochayuyo hamburgers, cochayuyo fettuccine, huiro fritters, huiro breadsticks, and luche-parsley pesto. Subsequently, the nutritional value of each of the dishes was analyzed. The chemical composition, including carbohydrates, proteins, lipids, sodium, and the fatty acid (FA) content, was examined. In general, the prepared food varieties demonstrated low lipid contents (4.1 to 8.5% dry weight, dw), moderate concentrations of protein (6.9 to 12.7% dw), and highly variable contents of total dietary fiber (1.3 to 18.9% dw). The fatty acid patterns were different for all prepared dishes, and the FA profile exhibited a beneficial contribution of polyunsaturated fatty acids (PUFAs), with a preponderance of linoleic acid and α-linolenic. The chemical composition of the dishes was compared to that of similar and commonly consumed food like white bread, hamburgers, fettuccine made of dough enriched with eggs, fritters, breadsticks, and green pesto. The results suggest that macroalgae can be used as an ingredient in prepared food where they may contribute successfully to a more balanced diet and to maintain the organoleptic characteristics in commercially attractive prepared food like cochayuyo bread, cochayuyo hamburger, cochayuyo fettuccine, huiro breadsticks, and luche-parsley pesto.


Edible macroalgae Fatty acid Mineral Nutritional composition Sub-Antarctic seaweeds 



The authors would like to thank the Regional Government for funding the projects “Sub-antarctic macroalgae opportunities for Gastronomic Tourism and Artisan Fishery” BIP Code: 30111118, “Transfer of healthy eating based on subantarctic macroalgae” BIP Code: 30127816 through the Innovation Fund for Competitiveness and FONDECYT Grant 1140940 A. Mansilla “Macroalgal adaptive radiation: potential links to ecological niche diversity in the ecoregion of Magallanes and Chilean Antarctic”. They would also like to thank chef Luis Gonzales for preparing the dishes and the Academic Writing Center at the UMAG for editing the usage of English throughout the text.


  1. AOAC (2007) Official methods of analysis of AOAC International, 18th edn. AOAC International, GaithersburgGoogle Scholar
  2. Astorga-España MS, Mansilla A (2014) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 26:973–978CrossRefGoogle Scholar
  3. Ávila MS, Saavedra MI, Toledo G et al (2001) Perfiles Nutricionales de Algas Chilenas: Generación de fuentes alternativas de materias primas para la alimentación de especies acuícola, basados en productos algales: I Peces. Proyecto FONDEFD01I1046, Conicyt, ChileGoogle Scholar
  4. Bocanegra A, Bastida S, Benedi J, Rodenas S, Sanchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258CrossRefPubMedGoogle Scholar
  5. Dantagnan P, Hernandez A, Borquez A, Mansilla A (2009) Inclusion of macroalgae meal (Macrocystis pyrifera) as feed ingredient for rainbow trout (Oncorhynchus mykiss): effect on flesh fatty acid composition. Aquac Res 41:87–94CrossRefGoogle Scholar
  6. Darcy-Vrillon B (1993) Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int J Food Sci Nutr 44:23–35Google Scholar
  7. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  8. Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784–786CrossRefPubMedGoogle Scholar
  9. Durán S, Fernández E, Fuentes J, Hidalgo A, Quintana C, Yunge W, Fehrmann P, Delgado C (2015) Food patterns associated with a healty body weight in Chilean students of nutrition and dietetics. Nutr Hosp 32:1780–1785Google Scholar
  10. Edwards MD, Holdt SL, Hynes S (2012) Algal eating habits of phycologists attending the ISAP Halifax Conference and members of the general public. J Appl Phycol 24:627–633CrossRefGoogle Scholar
  11. Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6:527–532CrossRefGoogle Scholar
  12. Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Tech 27:57–61CrossRefGoogle Scholar
  13. Frikha F, Kammoun M, Hammami N, Mchirgui RA, Belbahri L, Gargouri Y, Miled N, Ben-Rebah F (2011) Chemical composition and some biological activities of marine algae collected in Tunisia. Cienc Mar 37:113–124CrossRefGoogle Scholar
  14. INCAP OPS (2007) Tabla de Composición de Alimentos de Centro América. Menchú and Mendez, Guatemala CityGoogle Scholar
  15. Kendel M, Couzinet-Mossion A, Viau M, Fleurence J, Barnathan G, Wilgosz-Collin G (2013) Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J Appl Phycol 25:425–432CrossRefGoogle Scholar
  16. Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM (2014) α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 70:163–178CrossRefPubMedGoogle Scholar
  17. Kuda T, Taniguchi E, Nishizawa M, Araki Y (2002) Fate of water-soluble polysaccharides in dried Chorda filum a brown alga during water washing. J Food Compos Anal 15:3–9CrossRefGoogle Scholar
  18. Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56CrossRefPubMedGoogle Scholar
  19. López-López I, Cofrades S, Ruiz-Capillas C, Jimenez-Colmenero F (2009) Design and nutritional properties of potential functional frankfurters base on lipid formulation, added seaweed and low salt content. Meat Sci 83:255–262CrossRefPubMedGoogle Scholar
  20. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543CrossRefPubMedGoogle Scholar
  21. Mæhre H, Malde M, Karl-Erk E, Elvevoll E (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290CrossRefPubMedGoogle Scholar
  22. Mansilla A, Avila M, Yokoya Nair S (2012) Current knowledge on biotechnological interesting seaweeds from the Magallanes Region, Chile. Rev Bras Farmacogn 22:760–767CrossRefGoogle Scholar
  23. Mansilla A, González L, Astorga MS, Ávila M, Ojeda J, Rosenfeld S, Marambio J (2013) Use of seaweeds in Magellan’s gastronomy. La prensa Austral Impresos, Punta ArenasGoogle Scholar
  24. Martins RM, Dos Santos MAZ, Pacheco BS, Mansilla A, Astorga-España MS, Seixas F, De Pereira CMP (2016) Fatty acid profile of the Chlorophyta species from Chile’s sub-Antarctic region. Acad J Sci Res 4:093–098Google Scholar
  25. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524CrossRefGoogle Scholar
  26. Mendis E, Kim S (2011) Present and future prospects of seaweeds in developing functional foods. Adv Food Nutr Res 64:1–15CrossRefPubMedGoogle Scholar
  27. Merill AL, Watt BK (1973) Energy value of foods: basis and derivation. U S Department of Agriculture, Washington DCGoogle Scholar
  28. Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2015) Tablas de composición de alimentos. Pirámide, MadridGoogle Scholar
  29. Mouritsen OG, Mouritsen JD, Johansen M (2013) Seaweeds: edible, available, and sustainable. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  30. Paiva L, Lima E, Ferreira R, Neto AI, Baptista J (2014) Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem 164:128–135CrossRefPubMedGoogle Scholar
  31. Pereira H, Barreira L, Figueiredo F, Custodio L, Vizetto-Duarte C, Polo C, Resek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935CrossRefPubMedPubMedCentralGoogle Scholar
  32. Public Health Institute of Chile (1998) Protocols of the manual of physicochemical analysis of food, water and soil. Ministry of Health, SantiagoGoogle Scholar
  33. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2016) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. doi: 10.1007/s10811-016-0974-5:1-34 PubMedPubMedCentralGoogle Scholar
  34. Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds Part 1—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482CrossRefGoogle Scholar
  35. Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E (2003) Effects of fatty acids on meat quality: a review. Meat Sci 66:21–32CrossRefGoogle Scholar
  36. Zamorano M, Guzmán E, Melendez E (2007) Proximate composition and fatty acids profile of food packs of hot dogs consumed in “fast foods” chains from the metropolitan region of Chile. Rev Chil Nutr 34:150–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ma. S. Astorga-España
    • 1
    Email author
  • A. Mansilla
    • 1
    • 2
    • 3
  • J. Ojeda
    • 2
    • 3
  • J. Marambio
    • 2
  • S. Rosenfeld
    • 2
  • F. Mendez
    • 2
  • J. P. Rodriguez
    • 2
  • P. Ocaranza
    • 2
  1. 1.Department of Science and Natural ResourcesUniversity of MagallanesPunta ArenasChile
  2. 2.Laboratorio de Macroalgas Antárticas y Subantárticas (LMAS)University of MagallanesPunta ArenasChile
  3. 3.Institute of Ecology and BiodiversitySantiagoChile

Personalised recommendations