Advertisement

Journal of Applied Phycology

, Volume 29, Issue 4, pp 1945–1956 | Cite as

Phaeodactylum tricornutum in finishing diets for gilthead seabream: effects on skin pigmentation, sensory properties and nutritional value

  • Ana Ramalho Ribeiro
  • Amparo Gonçalves
  • Mónica Barbeiro
  • Narcisa Bandarra
  • Maria Leonor Nunes
  • Maria Luísa Carvalho
  • Joana Silva
  • João Navalho
  • Maria Teresa Dinis
  • Tomé Silva
  • Jorge Dias
Article

Abstract

Microalgal biomasses are known to play a major role in fish pigmentation, which is particularly important in farmed fish, since colour and external appearance are the first cue for customers when choosing seafood. A study was undertaken to assess the potential of microalgae biomass from the diatom Phaeodactylum tricornutum as a functional ingredient for gilthead seabream (Sparus aurata) feeds. Three experimental diets were designed: a control diet (CTRL), this same diet supplemented with 2.5% of P. tricornutum wild strain (diet MA20); and a third diet with 2.5% of P. tricornutum biomass (diet MA37) cultivated under different temperature and light regimes that resulted in higher levels of fucoxanthin. Microalgae diets led to a reduction (P < 0.05 in MA37) of whole-body fat and lower lipid retention (P < 0.05 in MA20 and MA37). Microalgae did not impact odour, flavour, whiteness, and fatness perception in cooked fillets. Overall, colour analysis showed that P. tricornutum biomass led to significant differences compared to control in specific areas: the MA37 diet induced a significantly (P < 0.05) lighter and more vivid yellow colouration of seabream operculum (ΔE* ≈ 5) perceptible to the human eye; ventral skin lightness was also affected by the dietary treatments (P = 0.040), being higher for microalgae-fed groups, though this difference was not perceptually strong (ΔE* ≈ 1.7). Phaeodactylum tricornutum biomass can be used as a functional ingredient, improving external pigmentation and thus contributing to meet consumer expectations in relation to farmed gilthead seabream.

Keywords

Gilthead seabream Microalgae Phaeodactylum tricornutum Diatom Skin pigmentation Quality 

Notes

Acknowledgements

This work was partly funded under the EU FP7 by the GIAVAP project no. 266401: Genetic Improvement of Algae for Value Added Product. The views expressed in this work are the sole responsibility of the authors and do not necessary reflect the views of the European Commission. Ana Ramalho Ribeiro acknowledges the financial support by FCT/MCTES (Portugal) through grant (SFRH/BD/73452/2010). All authors revised and approved the final version of the manuscript. The authors declare that they have no conflicts of interest.

Supplementary material

10811_2017_1125_MOESM1_ESM.docx (82 kb)
Online Resource Fig. S1 (DOCX 81 kb)

References

  1. Abdel-Tawwab M, Ahmad MH (2009) Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquac Res 40:1037–1046CrossRefGoogle Scholar
  2. Arechavala-Lopez P, Fernandez-Jover D, Black KD, Ladoukakis E, Bayle-Sempere JT, Sanchez-Jerez P, Dempster T (2013) Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Rev Aquacult 5:137–157CrossRefGoogle Scholar
  3. Bjerkeng B (2000) Carotenoid pigmentation of salmonid fishes-recent progress. In: Cruz-Suárez LE, Ricque-Marie D, TapiaSalazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, 19–22 Noviembre, 2000. Mérida, YucatánGoogle Scholar
  4. Carvalho ML, Santiago S, Nunes ML (2005) Assessment of the essential element and heavy metal content of edible fish muscle. Anal Bioanal Chem 382:426–432CrossRefPubMedGoogle Scholar
  5. Cerezuela R, Guardiola F, Meseguer J, Esteban MÁ (2012a) Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiol Biochem 38:1729–1739CrossRefPubMedGoogle Scholar
  6. Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MÁ (2012b) Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.) Fish Shellfish Immun 33:342–349CrossRefGoogle Scholar
  7. Chatzifotis S, Vaz Juan I, Kyriazi P, Divanach P, Pavlidis M (2011) Dietary carotenoids and skin melanin content influence the coloration of farmed red porgy (Pagrus pagrus). Aquac Nutr 17:e90–e100. doi: 10.1111/j.1365-2095.2009.00738.x CrossRefGoogle Scholar
  8. Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103CrossRefGoogle Scholar
  9. CIE (1976) Official recommendations on uniform colour space, colour difference equations and metric colour terms. Suppl. No. 2 to CIE Publication No. 15, Colorimetry. Commission International de l’Eclairage, ParisGoogle Scholar
  10. Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332Google Scholar
  11. Colihueque N, Araneda C (2014) Appearance traits in fish farming: progress from classical genetics to genomics, providing insight into current and potential genetic improvement. Front Genet 5:251. doi: 10.3389/fgene.2014.00251 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Costa S, Afonso C, Bandarra NM, Gueifão S, Castanheira I, Carvalho ML, Cardoso C, Nunes ML (2013) The emerging farmed fish species meagre (Argyrosomus regius): how culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food Chem Toxicol 60:277–285CrossRefPubMedGoogle Scholar
  13. Devcich DA, Pedersen IK, Petrie KJ (2007) You eat what you are: modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite 48:333–337CrossRefPubMedGoogle Scholar
  14. Dickson-Spillmann M, Siegrist M, Keller C (2011) Attitudes toward chemicals are associated with preference for natural food. Food Qual Prefer 22:149–156CrossRefGoogle Scholar
  15. EFSA Scientific Committee (2015) Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J 13(1):3982Google Scholar
  16. Fajardo AR, Cerdán LE, Medina AR, Fernández FGA, Moreno PAG, Grima EM (2007) Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Tech 109:120–126CrossRefGoogle Scholar
  17. FEAP (2015) FEAP Annual Report 2015. Liege, 38 ppGoogle Scholar
  18. Flos R, Reig L, Oca J, Ginovart M (2002) Influence of marketing and different land-based systems on gilthead sea bream (Sparus aurata) quality. Aquacult Int 10:189–206CrossRefGoogle Scholar
  19. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  20. Frankel EN (2005) Lipid oxidation, Second edn. The Oily Press, BridgwaterCrossRefGoogle Scholar
  21. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486CrossRefGoogle Scholar
  22. Gomes E, Dias J, Silva P, Valente L, Empis J, Gouveia L, Bowen J, Young A (2002) Utilization of natural and synthetic sources of carotenoids in the skin pigmentation of gilthead seabream (Sparus aurata). Eur Food Res Technol 214:287–293CrossRefGoogle Scholar
  23. Goodwin TW (1984) The biochemistry of carotenoids. Vol. II. Animals. Chapman & Hall, LondonCrossRefGoogle Scholar
  24. Gouveia L, Choubert G, Pereira N, Santinha J, Empis J, Gomes E (2002) Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquac Res 33:987–993CrossRefGoogle Scholar
  25. Gouveia L, Raymundo A, Batista AP, Sousa I, Empis J (2006) Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur Food Res Technol 222:362–367CrossRefGoogle Scholar
  26. Grigorakis K (2007) Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture 272:55–75CrossRefGoogle Scholar
  27. Grigorakis K, Alexis MN, Taylor KDA, Hole M (2002) Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. Int J Food Sci Tech 37:477–484CrossRefGoogle Scholar
  28. Grunert KG (1995) Food quality: a means-end perspective. Food Qual Prefer 6:171–176CrossRefGoogle Scholar
  29. Ha AW, Kim WK (2013) The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr Res Pract 7:287–293CrossRefPubMedPubMedCentralGoogle Scholar
  30. Haas S, Bauer JL, Adakli A, Meyer S, Lippemeier S, Schwarz K, Schulz C (2016) Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.) J Appl Phycol 28:1011–1021CrossRefGoogle Scholar
  31. Hutchings JB (1999) Food colour and appearance in perspective. In: Hutchings JB (ed) Food colour and appearance. Springer US, Boston, pp 1–29Google Scholar
  32. ISSFAL (2004) Recommendations for intake of polyunsaturated fatty acids in healthy adults. International Society for the Study of Fatty Acids and Lipids, Brighton, p 22Google Scholar
  33. Kalinowski CT, Robaina LE, Fernández-Palacios H, Schuchardt D, Izquierdo MS (2005) Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. Aquaculture 244:223–231CrossRefGoogle Scholar
  34. Kim K-W, Bai SC, Koo J-W, Wang X, Kim S-K (2002) Effects of dietary Chlorella ellipsoidea supplementation on growth, blood characteristics, and whole-body composition in juvenile Japanese flounder Paralichthys olivaceus. J World Aquacult Soc 33:425–431CrossRefGoogle Scholar
  35. Kim S, Jung Y-J, Kwon O-N, Cha K, Um B-H, Chung D, Pan C-H (2012) A potential commercial source of fucoxanthin extracted from the microalgae Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855CrossRefPubMedGoogle Scholar
  36. Kim S-S, Rahimnejad S, Kim K-W, Lee B-J, Lee K-J (2013) Effects of dietary supplementation of Spirulina and quercetin on growth, innate immune responses, disease resistance against Edwardsiella tarda, and dietary antioxidant capacity in the juvenile olive flounder Paralichthys olivaceus. Fish Aquat Sci 16:7–14Google Scholar
  37. Kiron V, Phromkunthong W, Huntley M, Archibald I, De Scheemaker G (2012) Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18:521–531CrossRefGoogle Scholar
  38. Kousoulaki K, Østbye T-KK, Krasnov A, Torgersen JS, Mørkøre T, Sweetman J (2015) Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae. J Nutr Sci 4:e4. doi: 10.1017/jns.2015.14 CrossRefGoogle Scholar
  39. Kris-Etherton PM, Harris WS, Appel LJ, Committee ftN (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757CrossRefPubMedGoogle Scholar
  40. Kris-Etherton PM, Grieger JA, Etherton TD (2009) Dietary reference intakes for DHA and EPA. Prostaglandins Leukot Essent Fatty Acids 81:99–104CrossRefPubMedGoogle Scholar
  41. Larsen R, Eilertsen K-E, Elvevoll EO (2011) Health benefits of marine foods and ingredients. Biotechnol Adv 29:508–518CrossRefPubMedGoogle Scholar
  42. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120PubMedGoogle Scholar
  43. Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Indust Biotechnol 10:169–183CrossRefGoogle Scholar
  44. Li MH, Robinson EH, Tucker CS, Manning BB, Khoo L (2009) Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture 292:232–236CrossRefGoogle Scholar
  45. Little AC, Martinsen C, Sceurman L (1979) Color assessment of experimentally pigmented rainbow trout. Color Res Appl 4:92–95Google Scholar
  46. Lund EK (2013) Health benefits of seafood: is it just the fatty acids? Food Chem 140:413–420CrossRefPubMedGoogle Scholar
  47. Maeda H (2015) Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J Oleo Sci 64:125–132CrossRefPubMedGoogle Scholar
  48. Mahy M, Van Eycken L, Oosterlinck A (1994) Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res Appl 19:105–121Google Scholar
  49. Martinsdóttir E, Schelvis R, Hyldig G, Sveinsdóttir K (2009) Sensory evaluation of seafood: general principles and guidelines. In: Rehbein H, Oehlenschläger J (eds) Fishery products. Wiley-Blackwell, Oxford, pp 411–424CrossRefGoogle Scholar
  50. Meilgaard M, Civille GV, Carr BT (1999) Sensory evaluation techniques, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. Nakagawa HE, Mustafa MDGH, Takii KE, Umino TE, Kumai HI (2000) Effect of dietary catechin and Spirulina on vitamin C metabolism in red sea bream. Fisheries Sci 66:321–326CrossRefGoogle Scholar
  52. Nandeesha MC, Gangadhar B, Varghese TJ, Keshavanath P (1998) Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquac Res 29:305–312CrossRefGoogle Scholar
  53. Nematipour GR, Nakagawa H, Nanba K, Kasahara S, Tsujimura A, Akira K (1987) Effect of Chlorella-extract supplement to diet on lipid accumulation of Ayu. Nippon Suisan Gakk 53:1687–1692CrossRefGoogle Scholar
  54. Nematipour GR, Nakagawa H, Ohya S (1990) Effect of Chlorella-extract supplementation to diet on in vitro lipolysis in ayu. Nippon Suisan Gakk 56:777–782CrossRefGoogle Scholar
  55. Oude Ophuis PAM, Van Trijp HCM (1995) Perceived quality: a market driven and consumer oriented approach. Food Qual Prefer 6:177–183CrossRefGoogle Scholar
  56. Peng J, Yuan J-P, Wu C-F, Wang J-H (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pham MA, Byun H-G, Kim K-D, Lee S-M (2014) Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 431:65–72CrossRefGoogle Scholar
  58. Rebolloso-Fuentes MM, Navarro-Pérez A, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of microalga Phaeodactylum tricornutum. J Food Biochem 25:57–76CrossRefGoogle Scholar
  59. Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ (2013) Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immun 35:883–889CrossRefGoogle Scholar
  60. Rodriguez-Garcia I, Guil-Guerrero JL (2008) Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem 108:1023–1026CrossRefPubMedGoogle Scholar
  61. Rogdakis YG, Koukou KK, Ramfos A, Dimitriou E, Katselis GN (2011) Comparative morphology of wild, farmed and hatchery released gilthead sea bream (Sparus aurata) in western Greece. Int J Fish Aquac 3:1–9Google Scholar
  62. Sacton J (1986) The seafood handbook: seafood business. John Wiley and Sons, Seattle 70p Google Scholar
  63. Sahin K, Orhan C, Yazlak H, Tuzcu M, Sahin N (2014) Lycopene improves activation of antioxidant system and Nrf2/HO-1 pathway of muscle in rainbow trout (Oncorhynchus mykiss) with different stocking densities. Aquaculture 430:133–138CrossRefGoogle Scholar
  64. Schubring R (2009) Colour measurement. In: Rehbein H, Oehlenschläger J (eds) Fishery products: quality, safety and authenticity. Wiley-Blackwell, Oxford, pp 127–172CrossRefGoogle Scholar
  65. Sefc KM, Brown AC, Clotfelter ED (2014) Carotenoid-based coloration in cichlid fishes. Comp Biochem Physiol A 173:42–51CrossRefGoogle Scholar
  66. Shahidi F, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci Nutr 38:1–67CrossRefPubMedGoogle Scholar
  67. Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfolgenabschätzung-Theorie und Praxis 21(1):23–37Google Scholar
  68. Šimat V, Bogdanović T, Krželj M, Soldo A, Maršić-Lučić J (2012) Differences in chemical, physical and sensory properties during shelf life assessment of wild and farmed gilthead sea bream (Sparus aurata, L.) J Appl Ichthyol 28:95–101CrossRefGoogle Scholar
  69. Šimat V, Bogdanović T, Poljak V, Petričević S (2015) Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities. J Food Compost Anal 40:120–125CrossRefGoogle Scholar
  70. Spence C, Levitan CA, Shankar MU, Zampini M (2010) Does food color influence taste and flavor perception in humans? Chemosens Percept 3:68–84CrossRefGoogle Scholar
  71. Storebakken T, Foss P, Schiedt K, Austreng E, Liaaen-Jensen S, Manz U (1987) Carotenoids in diets for salmonids: IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate and canthaxanthin. Aquaculture 65:279–292CrossRefGoogle Scholar
  72. Tibaldi E, Chini Zittelli G, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015) Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 440:60–68CrossRefGoogle Scholar
  73. Torrissen OJ (1985) Pigmentation of salmonids: factors affecting carotenoid deposition in rainbow trout (Salmo gairdneri). Aquaculture 46:133–142CrossRefGoogle Scholar
  74. Tulli F, Chini Zittelli G, Giorgi G, Poli BM, Tibaldi E, Tredici MR (2012) Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. J Aquat Food Prod Technol 21:188–197CrossRefGoogle Scholar
  75. Valente LMP, Cornet J, Donnay-Moreno C, Gouygou JP, Bergé JP, Bacelar M, Escórcio C, Rocha E, Malhão F, Cardinal M (2011) Quality differences of gilthead sea bream from distinct production systems in Southern Europe: intensive, integrated, semi-intensive or extensive systems. Food Control 22:708–717CrossRefGoogle Scholar
  76. Vasconcellos JP, Vasconcellos SA, Pinheiro SR, de Oliveira THN, Ribeiro NAS, Martins CN, Porfírio BA, Sanches SA, de Souza OB, Telles EO, Balian SC (2013) Individual determinants of fish choosing in open-air street markets from Santo André, SP/Brazil. Appetite 68:105–111CrossRefPubMedGoogle Scholar
  77. Vizcaíno AJ, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF, Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431:34–43CrossRefGoogle Scholar
  78. Walker AB, Berlinsky DL (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquacult 73:76–83Google Scholar
  79. Wassef EA, Chatzifotis S, Sakr EM, Saleh NE (2010) Effect of two natural carotenoid sources in diets for gilthead seabream, Sparus aurata, on growth and skin coloration. J Appl Aquaculture 22:216–229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ana Ramalho Ribeiro
    • 1
  • Amparo Gonçalves
    • 2
  • Mónica Barbeiro
    • 2
  • Narcisa Bandarra
    • 2
  • Maria Leonor Nunes
    • 2
  • Maria Luísa Carvalho
    • 3
  • Joana Silva
    • 4
  • João Navalho
    • 4
  • Maria Teresa Dinis
    • 1
  • Tomé Silva
    • 5
  • Jorge Dias
    • 5
  1. 1.Centro de Ciências do Mar do Algarve, Universidade do AlgarveFaroPortugal
  2. 2.IPMA, Portuguese Institute for the Sea and AtmosphereLisbonPortugal
  3. 3.LIBPhys-UNL, Universidade Nova de LisboaCaparicaPortugal
  4. 4.Necton, Companhia Portuguesa de Culturas MarinhasOlhãoPortugal
  5. 5.SPAROS Lda, Área Empresarial de MarimOlhãoPortugal

Personalised recommendations