Journal of Applied Phycology

, Volume 29, Issue 5, pp 2685–2693 | Cite as

Calcareous green algae standing stock in a tropical sedimentary coast

  • Ileana Ortegón-Aznar
  • Andrea Chuc-Contreras
  • Ligia Collado-Vides
22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN

Abstract

Calcareous green algae (CGA) are important producers of carbonaceous sediments in coastal environments; they fix carbon producing CaCO3 and organic compounds through photosynthesis contributing to the carbon budget of these ecosystems. In this study, the CGA standing stock (as dry weight) and its organic matter (OM) and inorganic carbon (CaCO3) were estimated along the north coast of Yucatan at two sampling sites (Cerritos 1 and Cerritos 2), five times between summer 2014 and summer 2015. The standing stock annual average of three CGA species: Halimeda incrassata, Halimeda opuntia, and Penicillus dumetosus was 1214.8 g m−2, of which 89% corresponded to CaCO3 and 11% to OM. Significant seasonal differences were found (p < 0.05) with a maximum of 1335.5 g m−2, CaCO3·1178.1 g m−2, OM 156.4 g m−2 in summer time in Cerritos 2. From the three species present, the largest standing stock was from H. opuntia (annual average 1142.9 g m−2). Seasonal changes were significant correlated with changes in temperature (Kendall Tau_b correlation 0.161, p < 0.0001); which is consistent with several studies that demonstrate that calcification is regulated by temperature. The CGA annual average standing stock found in this study is above the values reported for the Caribbean side of the peninsula. In our study sites H. opuntia is dominant and its high values are consistent with the “weedy” behavior reported in reef sites, making this species an important contribution of OM and CaCO3 into the local system. This study provides the baseline for future estimation of carbonate production of CGA and the role of CGA in the carbon budget of Yucatan.

Keywords

Green calcareous algae Standing stock Organic and inorganic carbon Calcium carbonate, Yucatan Peninsula 

References

  1. Aguilar WJ, Castro NN, Couoh JG (2012) El manejo del área marina y costera protegida Actam Chuleb y los beneficios económicos que genera a los usuarios del municipio de San Felipe, Yucatán, México. Estud Soc 20:125–153Google Scholar
  2. Barry SC, Frazer TK, Jacoby CA (2013) Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. J Exp Mar Biol Ecol 444:73–80CrossRefGoogle Scholar
  3. Beach K, Walters L, Vroom P, Smith C, Coyer J, Hunter C (2003) Variability in the ecophysiology of Halimeda spp. (Chlorophyta, Bryopsidales) on Conch Reef, Florida Keys, USA. J Phycol 39:633–643CrossRefGoogle Scholar
  4. Binning SA, Mavromatis C, Guichard F (2007) Density-dependent succession in Caribbean seagrass communities. McGill Science Undergraduate Research Journal 2:28–31Google Scholar
  5. Birch WR, Birch M (1984) Succession and pattern of tropical intertidal seagrass in Cockle Bay, Queensland, Australia: a decade of observations. Aquat Bot 19:343–367CrossRefGoogle Scholar
  6. Böhm L (1972) Concentration and distribution of Al, Fe and Si in the calcareous alga Halimeda opuntia. Int Rev Ges Hydrobiol 57:631–636CrossRefGoogle Scholar
  7. Böhm L (1973) Composition and calcium binding properties of the water soluble polysaccharides in the calcareous alga Halimeda opuntia (L) (Chlorophyta, Udoteaceae). Int Rev Ges Hydrobiol 58:117–126CrossRefGoogle Scholar
  8. Borowitzka MA, Larkum AWD (1976) Calcification in the green algae Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J Exp Bot 27:879–893CrossRefGoogle Scholar
  9. Bosence D (1989) Biogenic carbonate production in Florida Bay. Bull Mar Sci 44:419–433Google Scholar
  10. Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Monroy-Rivera VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:1–12CrossRefGoogle Scholar
  11. Bulthuis DA (1987) Effects of temperature on photosynthesis and growth of seagrasses. Aquat Bot 27:27–40CrossRefGoogle Scholar
  12. Campbell JE, Fisch J, Langdon C, Paul VJ (2015) Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35:357–368CrossRefGoogle Scholar
  13. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111–1123CrossRefGoogle Scholar
  14. Collado-Vides L, Rutten LM, Fourqurean JW (2005) Spatiotemporal variation of the abundance of calcareous green macroalgae in the Florida Keys: a study of synchrony within a functional-form macroalgal group. J Phycol 41:742–752CrossRefGoogle Scholar
  15. Davis BC, Fourqurean JW (2001) Competition between the tropical algae, Halimeda incrassata, and the seagrass, T. testudinum. Aquat Bot 71:217–232CrossRefGoogle Scholar
  16. Dawes CJ, Mathieson AC (2008) The seaweeds of Florida. University Press of Florida, USA, p 591Google Scholar
  17. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8CrossRefGoogle Scholar
  18. Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250CrossRefGoogle Scholar
  19. Fourqurean JW, Rutten LM (2003) Competing goals of spatial and temporal resolution: monitoring seagrass communities on a regional scale. In: Busch DE, Trexler JC (eds) Monitoring ecosystems: interdisciplinary approaches for evaluating Ecoregional initiatives. Island Press, Washington, pp 257–288Google Scholar
  20. Fourqurean JW, Durako MJ, Hall MO, Hefty LN (2002) Seagrass distribution in South Florida: a multi-agency coordinated monitoring program. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and the coral reefs of the Florida keys. CRC Press, Boca Raton, pp 497–522Google Scholar
  21. Fourqurean JW, Boyer JN, Durako MJ, Hefty LN, Peterson BJ (2003) Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecol Appl 13:474–489CrossRefGoogle Scholar
  22. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509CrossRefGoogle Scholar
  23. Fourqurean JW, Johnson B, Kauffman JB, Kennedy H, Lovelock C (2014) Chapter 3 field sampling of soil carbon pools in coastal ecosystems. In: Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (eds) Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington, USA, pp 39–66Google Scholar
  24. Freile D, Hillis L (1997) Carbonate productivity by Halimeda incrassata land in a proximal lagoon, Pico Feo, San Blas, Panama. In: proc. 8th Int Coral Reefs Symp 1:767–772.Google Scholar
  25. Gallegos ME, Merino M, Rodriguez A, Marba N, Duarte C (1994) Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Mar Ecol Prog Ser 109:99–104CrossRefGoogle Scholar
  26. Granier B (2012) The contribution of calcareous green algae to the production of limestones: a review. Geodiversitas 34:35–60CrossRefGoogle Scholar
  27. Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, Holmes KE, Brumbaugh DR (2006) The functional value of Caribbean coral reef, seagrasses and mangrove habitats to ecosystems process. Adv Mar Biol 50:59–191Google Scholar
  28. Herrera-Silveira J, Morales OM, Ramírez RJ (2010) Plantas marinas. In: Durán R, Méndez M (eds) Biodiversidad y Desarrollo Humano en Yucatán. CICY, PPD-FMAM, pp 197–200Google Scholar
  29. Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven RPJ (2015) Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 60:1689–1706CrossRefGoogle Scholar
  30. Hillis L (1997) Coral reefs calcareous algae from a green perspective, and a first carbonate budget. Proc. 8th Int. Coral Reef Symp 1:761–766Google Scholar
  31. Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: producers of primary coral reefs. Adv Mar Biol 17:1–327CrossRefGoogle Scholar
  32. Hudson JH (1985) Growth rate and carbonate production in Halimeda opuntia: Marquesas keys, Florida. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin, pp 257–263CrossRefGoogle Scholar
  33. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  34. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  35. Kirkman H (1985) Community structure in seagrasses in southern Western Australia. Aquat Bot 21:363–375CrossRefGoogle Scholar
  36. Kooistra WH, Coppejans EG, Payri C (2002) Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol Phylogenet Evol 24:121–138CrossRefPubMedGoogle Scholar
  37. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefPubMedGoogle Scholar
  38. Kun-Seop L, Dunton KH (1996) Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Mar Ecol Prog Ser 143:201–210CrossRefGoogle Scholar
  39. Kun-Seop L, Sang RP, Young KK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrass: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  40. Liebezeit G, Dawson R (1982) Changes in the polysaccharide matrix of calcareous green algae during growth. Journées Du GABIM, Act Colloq 14:147–154Google Scholar
  41. Littler DS, Littler MM (1999) Blade abandonment/proliferation: a novel mechanism for rapid epiphyte control in marine macrophytes. Ecology 80:1736–1746CrossRefGoogle Scholar
  42. Littler DS, Littler MM (2000) Caribbean reef plants: an identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Off Shore Graphics Inc, Washington, D.C.Google Scholar
  43. Littler MM, Littler SD, Norris PR (1983) Evolutionary strategies in a tropical barrier reef system: functional form groups of marine macroalgae. J Phycol 19:223–231Google Scholar
  44. Littler MM, Littler SD, Blair SM, Norris JN (1986) Deepwater plant from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Res 33:881–892CrossRefGoogle Scholar
  45. Littler MM, Littler SD, Brooks B (2004) Extraordinary mound-building forms of Avrainvillea (Bryopsidales, Chlorophyta): their experimental taxonomy, comparative functional morphology and ecological strategies. Atoll Res Bull 515:1–28CrossRefGoogle Scholar
  46. Mayakun J, Bunruk P, Kongsaeng R (2014) Growth rate and calcium carbonate accumulation of Halimeda macroloba Decaisne (Chlorophyta: Halimedaceae) in Thai waters. Songklanakarin J Sci Technol 36:419–423Google Scholar
  47. Payri CE (1988) Halimeda contribution to organic and inorganic production in a Tahitian reef system. Coral Reefs 6:251–262CrossRefGoogle Scholar
  48. Ries JB (2005) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31:445–458CrossRefGoogle Scholar
  49. Ries JB (2009) Effects of secular variation in seawater Mg⁄Ca ratio (calcite–aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea—evidence from recent experiments and the geological record. Terra Nov. 21:323–339Google Scholar
  50. Robledo D, Freile-Pelegrín Y (1998) Macroflora marina de interés económico de las costas de Yucatán. In: Benítez H, Vega E, Peña A, Ávila S (eds) Aspectos económicos sobre la biodiversidad de México. CONABIO– SEMARNAP, México, pp 167–179Google Scholar
  51. Stark LM, Almodovar L, Krauss RW (1969) Factors affecting the rate of calcification in Halimeda opuntia (L.) and Halimeda discoidea Lamouroux Decaisne. J Phycol 5:305–312CrossRefPubMedGoogle Scholar
  52. van der Heide T, Eklöf JS, van Nes EH, van der Zee EM, Donadi S, Weerman EJ, Olff H, Eriksson BK (2012) Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape. PLoS One 7:e42060CrossRefPubMedPubMedCentralGoogle Scholar
  53. van Tussenbroek BI, van Dijk JK (2007) Spatial and temporal variability in biomass and production of psammophytic Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. J Phycol 43:69–77CrossRefGoogle Scholar
  54. Wilkinson BH (1979) Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527CrossRefGoogle Scholar
  55. Williams SL (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monogr 60:449–469CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ileana Ortegón-Aznar
    • 1
  • Andrea Chuc-Contreras
    • 1
  • Ligia Collado-Vides
    • 2
    • 3
  1. 1.Departamento de Biología marinaUniversidad Autonoma de YucatanMeridaMexico
  2. 2.Department of BiologyFlorida International UniversityMiamiUSA
  3. 3.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations