Advertisement

Journal of Applied Phycology

, Volume 29, Issue 3, pp 1485–1491 | Cite as

Hydrurus foetidus (Chrysophyceae)—an inland macroalga with potential

  • Dag KlavenessEmail author
Article

Abstract

Hydrurus foetidus (Villars) Trevisan is a benthic freshwater alga in the class Chrysophyceae. Under seasonal climate regimes, it may be found in rivers during the cold seasons. It is widely distributed in cold-temperate, polar, and periglacial regions. Its heavy extracellular polysaccharide coating and its importance as food for grazers under cold conditions may indicate a potential for applied purposes. The strain G 070301 has been kept in culture since 2007. In this presentation, we have fine-tuned our laboratory culturing, detected the presence and positions of lipids in the cells by fluorescence imaging, and performed a preliminary analysis of the unsaturated fatty acids in Hydrurus grown on minimal medium. Little is known about the physiological adaptability of chrysophytes for applied purposes. Following optimization of media and a simple harvesting technology, the psychro- and rheophilic species H. foetidus may have a future as a source of polyunsaturated fatty acids for inland aquaculture and for polysaccharides.

Keywords

Hydrurus Chrysophyceae Culture PUFA Polysaccharide 

Notes

Acknowledgements

The author is grateful to Thomas E. Gundersen, CEO at Vitas, for the advice concerning the preparation of material for the present and future analyses of algal components. The project has been supported by the Finse Alpine Research Centre (www.finse.uio.no ), and the author is indebted to its personnel.

References

  1. Adams C, Bugbee B (2014) Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol 26:1351–1357CrossRefGoogle Scholar
  2. Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58:122–137CrossRefGoogle Scholar
  3. Arts MT, Brett MT, Kainz MJ (eds) (2009) Lipids in aquatic ecosystems. Springer, DordrechtGoogle Scholar
  4. Avel M, Avel M (1932) Sur l’existence dans le Massif Central de la Chrysomonadine Hydrurus foetidus Kirchner. Rev Algol 11:347–349Google Scholar
  5. Bachhaus D (1968) Ökologische Untersuchungen an den Aufwuchsalgen der obersten Donau und ihrer Quellflüsse. III. Die Algenverteilung und ihre Beziehungen zur Milieuofferte. Arch Hydrobiol/Suppl XXXIV (Donauforschung III) 3:130–149Google Scholar
  6. Baweja P, Sahoo D, García-Jiménes P, Robaina RR (2009) Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol Res 57:45–58CrossRefGoogle Scholar
  7. Beattie A, Hirst EL, Perceival E (1961) Studies on the metabolism of the Chrysophyceae. Biochem J 79:531–537Google Scholar
  8. Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley Blackwell, Chichester, England, pp 461–503CrossRefGoogle Scholar
  9. Brett MT, Müller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437CrossRefGoogle Scholar
  10. Bursa A (1934) Hydrurus foetidus Kirch. w Polskich Tatrach. – Hydrurus foetidus Kirch. in der Polnischen Tatra. I. Oekologie, Morphologie. II. Phenologie. Bull Int l’Académie Polonaise des Sciences des Lettres (Classe des Sciences Mathématiques Naturelles. Série B: Sciences Naturelles (I)) 69–84 + 113–31Google Scholar
  11. Bux F (ed) (2013) Biotechnological applications of microalgae. CRC Press, Boca RatonGoogle Scholar
  12. Cavalier-Smith T (2010) Kingdoms protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345CrossRefPubMedGoogle Scholar
  13. Charrier B, Rolland E, Gupta V, Reddy CRK (2015a) Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Front Plant Sci. doi: 10.3389/fpls.2015.00127 Google Scholar
  14. Charrier B, Coates JC, Robaina RR (eds.) (2015b) From the emergence of multicellularity to complex body architectures: update and perspectives on the biological mechanisms involved in macroalgal development. Frontiers in Plant Science, Spec Iss, http://journal.frontiersin.org/researchtopic/2598/from-the-emergence-of-multicellularity-to-complex-body-architectures-update-and-perspectives-on-the
  15. Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 206–235Google Scholar
  16. Fukushima H (1962) Preliminary report on the life history of Hydrurus foetidus. Acta Phytotax Geobot 20:290–295Google Scholar
  17. Galloway AWE, Sami J, Taipale SJ, Hiltunen M, Peltomaa E, Strandberg U, Brett MT, Kankaala P (2014) Diet-specific biomarkers show that high-quality phytoplankton fuels herbivorous zooplankton in large boreal lakes. Freshw Biol 59:1902–1915CrossRefGoogle Scholar
  18. Geitler L (1927) Über Vegetationsfärbungen in Bächen (On staining by vegetation in streams). Biol Generalis Int Zallg Frag Lebensforsch 3:791–814 + Taf. XVIII-XXIGoogle Scholar
  19. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973CrossRefPubMedGoogle Scholar
  20. Griffiths DJ (2013) Microalgae and man. Nova Science Publishers Inc, New YorkGoogle Scholar
  21. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14Google Scholar
  22. Guiry W (2016) In: Guiry MD, Guiry GM (eds) AlgaeBase. World-wide electronic publication, Natl Univ Ireland, Galway http://www.algaebase.org ; searched on 12 March 2016Google Scholar
  23. Hovasse R, Joyon L (1960) Contribution à l'étude de la Chrysomonadine Hydrurus foetidus. Rev Algol, Nouv Sér 5:66–83 + Pl. 6-9Google Scholar
  24. Kann E (1978) Systematik und Ökologie der Algen österreichischer Bergbäche. Arch Hydrobiol/Suppl 53(4):405–643Google Scholar
  25. Kim KM, Park J-H, Bhattacharya D, Yoon HS (2014) Application of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol 64:333–345CrossRefPubMedGoogle Scholar
  26. Klaveness D (1990) Size structure and potential food value of the plankton community to Ostrea edulis L. in a traditional Norwegian “Østerspoll”. Aquaculture 86:231–247CrossRefGoogle Scholar
  27. Klaveness D (2012) En kuldekjær biofilmregissør Hydrurus foetidus. Biolog (Oslo) 30:20–26Google Scholar
  28. Klaveness D, Guillard RRL (1975) The requirement for silicon in Synura petersenii (Chrysophyceae). J Phycol 11:349–355Google Scholar
  29. Klaveness D, Lindstrøm E-A (2011) Hydrurus foetidus (Chromista, Chrysophyceae): a large freshwater chromophyte alga in laboratory culture. Phycol Res 59:105–112CrossRefGoogle Scholar
  30. Klaveness D, Bråte J, Patil W, Shalchian-Tabrizi K, Kluge R, Gislerød HR, Jakobsen KS (2011) The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyte Hydrurus foetidus. Eur J Phycol 46:282–291CrossRefGoogle Scholar
  31. Klebs G (1893) Flagellatenstudien. Teil II Z Wiss Zool Abt A 55:353–445 + Taf. XVII-XVIIIGoogle Scholar
  32. Koussoroplis A-M, Nussbaumer J, Arts MT, Guschina IA, Kainz MJ (2014) Famine and feast in a common freshwater calanoid: effect of diet and temperature on fatty acid dynamics of Eudiaptomus gracilis. Limnol Oceanogr 59:947–958CrossRefGoogle Scholar
  33. Lehman JT (1976) Ecological and nutritional studies on Dinobryon Ehrenb: seasonal periodicity and the phosphate toxicity problem. Limnol Oceanogr 21:646–658CrossRefGoogle Scholar
  34. Lindstrøm E-A, Johansen SW, Saloranta T (2004) Periphyton in running water—long-term studies of natural variation. Hydrobiologia 521:63–86CrossRefGoogle Scholar
  35. Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492CrossRefPubMedGoogle Scholar
  36. Mack B (1953) Untersuchungen an Chrysophyceen IV. Zur Kenntnis von Hydrurus foetidus. Öster Bot Z 100:579–582CrossRefGoogle Scholar
  37. Milner AM, Brittain JE, Castellas E, Petts GE (2001) Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshw Biol 46:1833–1847CrossRefGoogle Scholar
  38. Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77CrossRefGoogle Scholar
  39. Moog O, Janecek BFU (1991) River flow, substrate type and Hydrurus density as major determinants of macroinvertebrate abundance, composition and distribution. Int Ver Theor Angew Limnol, Verh 24:1888–1896Google Scholar
  40. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697CrossRefPubMedPubMedCentralGoogle Scholar
  41. Muskiet FAJ, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA (2004) Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr 134:183–186PubMedGoogle Scholar
  42. Nunez M, Quigg A (2016) Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations. J Appl Phycol 28:2123–2138CrossRefGoogle Scholar
  43. Palmer CM (1962) Algae in water supplies. An illustrated manual on the identification, significance, and control of algae in water supplies, Publ Health Serv Publ No 657. U.S. Department of Health, Education, and Welfare, Washington 25, D.C.Google Scholar
  44. Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9CrossRefGoogle Scholar
  45. Preisig HR (1995) A modern concept of chrysophyte classification. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 46–74CrossRefGoogle Scholar
  46. Quillet M (1955) Sur la nature chimique de la leucosine, polysaccharide de réserve caractéristique des Chrysophycées, extraite d’Hydrurus foetidus. CR Acad Sci III-Vie 240:1001–1003Google Scholar
  47. Raven JA (1995) Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 95–118CrossRefGoogle Scholar
  48. Remias D, Jost S, Boenigk J, Wastian J, Lütz C (2013) Hydrurus-related golden algae (Chrysophyceae) cause yellow snow in polar summer snowfields. Phycol Res 61:277–285CrossRefGoogle Scholar
  49. Richmond A, Hu Q (eds) (2013) Handbook of microalgal culture, 2nd edn. Wiley Blackwell, Chichester, U.K.Google Scholar
  50. Rott E, Schneider SC (2014) A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Sci Tot Env 475:180–186CrossRefGoogle Scholar
  51. Rott E, Cantonati M, Füreder L, Pfister P (2006a) Benthic algae in high altitude streams of the alps—a neglected component of the aquatic biota. Hydrobiologia 562:195–216CrossRefGoogle Scholar
  52. Rott E, Füreder L, Schütz C, Sonntag B, Wille A (2006b) A conceptual model for niche differentiation of biota within an extreme stream microhabitat. Int Ver Theor Angew Limnol, Verh 29:2321–2323Google Scholar
  53. Sandgren CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York, pp 9–104Google Scholar
  54. Sandgren CD (1991) Chrysophyte reproduction and resting cysts: a paleolimnologist’s primer. J Paleolimn 5:1–9CrossRefGoogle Scholar
  55. Schmedtje U, Bauer A (eds) (1998) Trophiekartierung von aufwuchs- und makrophyten-dominierten Fliessgewässern. Informationsber. Heft 4/98. Bayerischen Landesamtes für Wasserwirtschaft, MünchenGoogle Scholar
  56. Schneider S, Lindstrøm E-A (2009) Bioindication in Norwegian rivers using non-diatomous benthic algae: the acidification index periphyton (AIP). Ecol Indic 9:1206–1211CrossRefGoogle Scholar
  57. Škaloudová M, Škaloud P (2013) A new species of Chrysosphaerella (Chrysophyceae: Chromulinales), Chrysosphaerella rotundata sp. nov., from Finland. Phytotaxa 130:34–42CrossRefGoogle Scholar
  58. Sládeček V (1973) System of water quality from the biological point of view. Arch Hydrobiol, Beih 7 :I-IV–1-218 Ergebn LimnolGoogle Scholar
  59. Smith GM (1950) The fresh-water algae of the United States, 2nd edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  60. Ström KM (1926) Norwegian mountain algae. Skrifter, Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse No. 6. Det Norske Videnskaps-Akademi, OsloGoogle Scholar
  61. Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Aquat Microb Ecol 71:165–178CrossRefGoogle Scholar
  62. Taylor WR (1954) II. Algae: non-planktonic. The cryptogamic flora of the arctic (Spec Iss). Bot Rev 20:363–399CrossRefGoogle Scholar
  63. von Stosch HA (1951) Über das Leukosin, den Reservestoff der Chrysophyten. Naturwissenschaften 38:192–193CrossRefGoogle Scholar
  64. Watson SB, Satchwill T (2003) Chrysophyte odour production: resource-mediated changes at the cell and population levels. Phycologia 42:393–405CrossRefGoogle Scholar
  65. Wehr JD, Sheath RG (2003) Freshwater habitats of algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America—ecology and classification. Academic Press, New York, pp 11–57CrossRefGoogle Scholar
  66. Wille N (1885) Bidrag til Algernes Physiologiske Anatomi. Kungl Svenska Vet--Akad Handl 21(12):1–104Google Scholar
  67. Zah R, Burgherr P, Bernasconi SM, Uehlinger U (2001) Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshw Biol 46:871–882CrossRefGoogle Scholar
  68. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of BiosciencesUniversity of OsloOsloNorway

Personalised recommendations