Journal of Applied Phycology

, Volume 29, Issue 5, pp 2539–2546 | Cite as

Wart-like spot formation on the fronds of Chondrus ocellatus (Gigartinales) by a brown alga, Mikrosyphar zosterae (Ectocarpales) in Korea

  • Cyr Abel Maranguy Ogandaga
  • Yeon Ju Na
  • Sang-Rae Lee
  • Young Sik Kim
  • Han Gil Choi
  • Ki Wan Nam
22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN

Abstract

A brown filamentous endophyte, Mikrosyphar zosterae, occasionally appears as an epiendophyte of seagrass in Europe and North America. In the present study, M. zosterae was first isolated from wart-like spots of the red alga Chondrus ocellatus and identified by morphological features and molecular analysis. The production of wart-like spots M. zosterae on the host C. ocellatus fronds was confirmed using Koch’s postulates and in mixed culture of the two species. Neither hypertrophic nor hyperplastic cells of host C. ocellatus were found in the wart-like spots which differed from gall composition in other species. Wart-like spot formation by brown filamentous M. zosterae on the red macroalgal fronds is reported for the first time. In the culture, three morphological types of M. zosterae were observed, which were heterotrichous, pseudoparenchymatous and monostromatic prostrate thalli. Phaeophycean hairs and reproductive organs (both unilocular and plurilocular sporangia) of M. zosterae were also observed in the culture. In conclusion, M. zosterae is a causative agent producing wart-like spots on Chondrus fronds, which is a new record in red seaweeds and was confirmed in the laboratory culture for the first time.

Keywords

Chondrus ocellatus Mikrosyphar zosterae Epi-endophyte Wart-like spot Morphology 

Notes

Acknowledgements

This research was financially supported by a grant from the Marine Biotechnology Program funded by the Ministry of Ocean and Fisheries of the Korean Government. It was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1A2B1013402).

References

  1. Amsler CD, Iken K, Mcclintock JB, Baker BJ (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545CrossRefGoogle Scholar
  2. Apt KE (1988a) Galls and tumor-like growths on marine macroalgae. Dis Aquat Org 4:211–217CrossRefGoogle Scholar
  3. Apt KE (1988b) Etiology and development of hyperplasia induced by Streblonema sp. (Phaeophyta) on members of the Laminariales (Phaeophyta). J Phycol 24:28–34Google Scholar
  4. Apt KE, Gibor A (1989) Development and induction of bacteria-associated galls on Prionitis lancelolata (Rhodophyta). Dis Aquat Org 6:151–156CrossRefGoogle Scholar
  5. Apt KE, Gibor A (1991) The ultrastructure of galls on the red alga Gracilaria epihippisora. J Phycol 27:401–413CrossRefGoogle Scholar
  6. Brodie J, Guiry MD, Masuda M (1993) Life history, morphology and crossability of Chondrus ocellatus forma ocellatus and C. ocellatus forma crispoides (Gigartinales, Rhodophyta) from the north-western Pacific. Eur J Phycol 28:183–196CrossRefGoogle Scholar
  7. Campello F (1991) Troubles d’origines biotiques et abiotiques rencontres en aquiculture de macrophytes. IFREMER. Catalogue. 39 ppGoogle Scholar
  8. Correa JA, Nielsen R, Grund DW, McLachlan JL (1987) Endophytic algae of Irish moss (Chondrus crispus Stackh.). Hydrobiologia 151/152:223–228CrossRefGoogle Scholar
  9. Correa JA, McLachlan JL (1992) Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar Ecol Prog Ser 81:73–87CrossRefGoogle Scholar
  10. Correa JA, Flores V, Sanchez P (1993) Deformative disease in Iridaea laminarioides (Rhodophyta): gall development associated with an endophytic cyanobacterium. J Phycol 29:853–860CrossRefGoogle Scholar
  11. Correa JA, Sanchez PA (1996) Ecological aspects of algal infectious diseases. Hydrobiologia 326/327:89–95CrossRefGoogle Scholar
  12. Costello MJ, Emblow CS, White R (2001) European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels 50:1–463Google Scholar
  13. Craigie JS, Shacklock PF (1989) Culture of Irish moss. In: Boghen AD (ed) Cold water aquaculture in Atlantic Canada, 2rd edn. The Canadian Institute for Research on Regional Development, Moncton, pp. 243–270Google Scholar
  14. Craigie JS, Correa JA (1996) Etiology of infectious diseases in cultivated Chondrus crispus (Gigartinales, Rhodophyta). Hydrobiologia 326/327:97–104CrossRefGoogle Scholar
  15. Fernandes DRP, Yokoya NS, Yoneshigue-Valentin Y (2011) Protocol for seaweed decontamination to isolate unialgal cultures. Rev Bras Farmacogn 21:313–316CrossRefGoogle Scholar
  16. Gachon C, Ngando TS, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 11:633–640CrossRefGoogle Scholar
  17. Ganesan M, Thiruppathi S, Nivedita S, Rengarajan N, Veeragurunathan V, Jha B (2006) In situ observations on preferential grazing of seaweeds by some herbivores. Curr Sci 91:1256–1260Google Scholar
  18. Garbary DJ, Kim KY, Klinger T, Duggins D (1999) Red algae as hosts for endophytic kelp gametophytes. Mar Biol 135:35–40CrossRefGoogle Scholar
  19. Gauna MC, Parodi ER, Cáceres EJ (2009a) Epi-endophytic symbiosis between Laminariocolax aeidioides (Ectocarpales, Phaeophyceae) and Undaria pinnatifida (Laminariales, Phaeophyceae) growing on Argentinian coasts. J Appl Phycol 21:11–18CrossRefGoogle Scholar
  20. Gauna MC, Parodi ER, Eduardo JC (2009b) The occurrence of Laminarionema elsbetiae (Phaeophyceae) on Rhodymenia pseudopalmata (Rhodophyta) from the Patagonian coasts of Argentina: characteristics of the relationship in natural and experimental infections, and morphology of the epi-endophyte in unialgal free cultures. Algae 24:249–256CrossRefGoogle Scholar
  21. Goecke F, Wiese J, Núñez A, Labes A, Imhoff JF, Neuhauser S (2012) A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot. PLoS One 7(9):e45358CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guiry M. In Guiry MD and Guiry GM. (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 13 January 2015
  23. Heesch S (2005) Endophytic Phaeophyceae from New Zealand. PhD Thesis, University of Otago, Dunedin, New ZealandGoogle Scholar
  24. Helcom (2012) Checklist of Baltic Sea Macro-species. Baltic Sea Environment Proceedings No. 130Google Scholar
  25. Hubbard CB, Garbary DJ, Kim KY, Chiasson DM (2004) Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta). Helgoland Mar Res 58:18–25CrossRefGoogle Scholar
  26. Kim KY, Choi TS, Lee YH (2004) Host specificity of endophytic kelp gametophytes. Algae 19:31–37CrossRefGoogle Scholar
  27. Kim YS, Choi HG, Nam KW (2006) Phenology of Chondrus ocellatus in Cheongsapo near Busan Korea. J Appl Phycol 18:551–556CrossRefGoogle Scholar
  28. Largo DB (2002) Recent developments in seaweed diseases. In: Hurtado AQ, Guanzon Jr. NG, de Castro-Mallare TR, Luhan Ma RJ(eds) proceedings of the national seaweed planning workshop. Southeast Asian Fisheries Development Centre Aquaculture Department, Tigbauan, Iloilo, p. 8Google Scholar
  29. Lee OH, Yoon KY, Kim KJ, You S, Lee BY (2011a) Seaweed extracts as a potential tool for the attenuation of oxidative damage in obesity-related pathologies. J Phycol 47:548–556CrossRefPubMedGoogle Scholar
  30. Lee SR, Oak JH, Keum YS, Le J, Chun IK (2011b) Utility of rbcS gene as a novel target DNA region for brown algal molecular systematics. Phycol Res 59:34–41CrossRefGoogle Scholar
  31. Lee YK, Yoon HS, Motomura T, Kim YJ, Boo SM (1999) Phylogenetic relationships between Pelvetia and Pelvetiopsis (Fucaceae, Phaeophyta) inferred from sequences of the RuBisCo spacer region. Eur J Phycol 34:205–211CrossRefGoogle Scholar
  32. Lein TE, Sjøtun K, Wakili S (1991) Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193CrossRefGoogle Scholar
  33. Li X, Zhao P, Wang G, Li D, Wang G, Duan D (2010) Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin J Oceanol Limnol 28:508–513CrossRefGoogle Scholar
  34. Lohmann C, Schilling P, Fürhaupter K (2001) Taxonomie mariner Makrophyten und ihre Bedeutung für das Monitoring im Rahmen der internationalen Meeresschutzabkommen. Taxonomischer Makrophyten-Workshop. pp 114Google Scholar
  35. McLachlan JL (1991) Chondrus crispus (Irish moss), an ecologically important and commercially valuable species of red seaweed of the North Atlantic Ocean. In: Mauchline J, Nemoto T (eds) Marine biology: its accomplishment and future Prospect. Hokusensha Publishing Co., Tokyo, pp. 217–233Google Scholar
  36. Mol I, Coppejans E (1985) Algues marines nouvelles pour la côte du Boulonnais (Pas-De-Calais, France) II. Bull Soc Roy Bot Belg 118:233–243Google Scholar
  37. Neill K, Heesch S, Nelson W (2008) Diseases, pathogens and parasites of Undaria pinnatifida. MAF Biosecurity New Zealand Technical Paper No: 2009/44Google Scholar
  38. Neto AI, Cravo DC, Haroun RT (2001) Checklist of the benthic marine plants of the Madeira Archipelago. Bot Mar 44:391–414CrossRefGoogle Scholar
  39. Nielsen R (1987) Marine algae within calcareous shells from New Zealand. N Z J Bot 25:425–438Google Scholar
  40. Potin P (2012) Intimate associations between epiphytes, endophytes, and parasites of seaweeds. In: Bischof K, Wiencke C (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, New York, pp. 203–234CrossRefGoogle Scholar
  41. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae (Proc. Jap. Conf. Hakone, 1966), Jap Soc Plant Physiol 63–67Google Scholar
  42. Sasaki H, Lindstrom SC, Waaland JR, Kawai H (2003) Occurrence of the gametophyte of Agarum clathratum (Laminariales, Phaeophyceae) as an endophyte in Orculifilum denticulatum (Gigartinales, Rhodophyceae). Phycol Res 51:192–202Google Scholar
  43. Schoenrock KM, Amsler CD, McClintock JB, Baker BJ (2013) Endophyte presence as a potential stressor on growth and survival in Antarctic macroalgal hosts. Phycologia 52:595–599CrossRefGoogle Scholar
  44. Shacklock PF, Croft GB (1981) Effect of grazers on Chondrus crispus in culture. Aquaculture 22:331–342CrossRefGoogle Scholar
  45. South GR, Tittley I, Farnham WF, Keats DW (1988) A survey of the benthic marine algae of southwestern New Brunswick, Canada. Rhodora 90:419–451Google Scholar
  46. Thomas D, Beltrán J, Flores V, Contreras L, Bollmann E, Correa JA (2009) Laminariocolax sp. (Phaeophyceae) associated with gall developments in Lessonia nigrescens (Phaeophyceae). J Phycol 45:1252–1258CrossRefPubMedGoogle Scholar
  47. Valderrama D, Cai J, Hishamunda N, Ridler N (2013) Social and economic dimensions of carrageenan seaweed farming. FAO Fish Aqua Tech Paper 580. FAO, Rome, p. 204Google Scholar
  48. Wang A, Wang J, Duan D (2006) Early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin J Oceanol Limnol 24:129–133CrossRefGoogle Scholar
  49. West JA, Pueschel CM, Klochkova TA, Kim GH, De Goër S, Zuccarello GC (2013) Gall structure and specificity in Bostrychia culture isolates (Rhodomelaceae, Rhodophyta). Algae 28:83–92CrossRefGoogle Scholar
  50. Zuccarello GC (2008) A fungal gall of Catenella nipae (Caulacanthaceae, Rhodophyta) and a review of Catenellocolax leeuwenii. Bot Mar 51:436–440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Biological Science and Institute for Basic ScienceWonkwang UniversityIksanSouth Korea
  2. 2.Marine Research InstitutePusan National UniversityBusanSouth Korea
  3. 3.Department of Marine BiotechnologyKunsan National UniversityKunsanSouth Korea
  4. 4.Department of Marine BiologyPukyong National UniversityBusanSouth Korea

Personalised recommendations