Journal of Applied Phycology

, Volume 29, Issue 3, pp 1707–1720 | Cite as

Nutrient removal by biomass accumulation on artificial substrata in the northern Baltic Sea

  • Milla SuutariEmail author
  • Elina Leskinen
  • Kristian Spilling
  • Kirsi Kostamo
  • Jukka Seppälä


We studied the potential of utilizing non-seeded artificial substrata in growing macrofauna and macroalgae to remove excess nutrients from seawater in the northern Baltic Sea. Succession, species composition, and biomass on two different substratum types were studied. Organic carbon (C), nitrogen (N), and phosphorus (P) as well as heavy metal (As, Cd, Cu, Pb, and Zn) contents were measured from the algal species and the invertebrate fraction. The invertebrate fraction formed more than 94% of the total biomass and consisted of blue mussels (Mytilus trossulus), bay barnacles (Amphibalanus improvisus), and hydroids (Cordylophora caspia and Gonothyraea loveni). Major algal species consisted of green algae Ulva spp. and Cladophora glomerata, red algae Ceramium tenuicorne and Polysiphonia fibrillosa, and filamentous brown algae Pylaiella littoralis and Ectocarpus siliculosus. The highest biomasses were measured at the end of the experiment, after 14.5 months of exposure in the sea, when the total biomass was on average 2.4 kg dry weight (DW) m−2 substratum, containing approximately 50 g N and 5 g P. The heavy metal concentrations were site and species dependent and on average lower in the invertebrate fraction compared with the macroalgal fraction. In some cases especially, Cd may limit biomass use as fertilizers. According to these results, annual N and P emissions from small-sized point sources could be reduced by using artificial substrata to remove sessile organisms, but this would require extensive cultivations. Furthermore, the utilization of the marine macroalgal and invertebrate biomass in biogas production requires adding more carbon-rich feedstock to obtain optimal results.


Macroalgae Invertebrates Bioremediation Eutrophication Nutrient and heavy metal content Baltic Sea 



This study was funded by European Regional Development Fund through the Baltic Sea Region Programme 2007-13 project “Sustainable Uses of Baltic Marine Resources, SUBMARINER,” The Foundation for Research of Natural Resources in Finland, and Maa- ja vesitekniikan tuki ry. We thank T. Sara-Aho for the metal analysis; J. Saren, J. Koistinen, E. Nikkola, and M. Sjöblom for the nutrient analysis and other laboratory services; A. Ruuskanen, L. Järvinen, V. Kinnunen, and G. Lundberg for the assistance with installations; and B. Regmi, B. Dulal, T. Saarinen, E. Salo, T. Hastings, H. Kauko, J. Enqvist, K. Yordanov, T. Hämäläinen, and M. Issakainen for the assistance during field and laboratory work. Our sincere thanks for cooperation are due to S. Airaksinen and O. Norrdahl at the Finnish Game and Fisheries Institute. M. Riittonen kindly allowed us to use his boat and helped with the installation of the experiment.

Supplementary material

10811_2016_1023_MOESM1_ESM.pdf (109 kb)
Online Resource 1 Installation in Rymättylä the 13th of June 2012 (PDF 108 kb)
10811_2016_1023_MOESM2_ESM.pdf (184 kb)
Online Resource 2 Substrata from biomass line the 20th of June 2012. Substrata have been in water since May 2011. Up left and right: Net substratum in water and the same substratum lifted out from the water. Lower picture presents rope substrata (PDF 183 kb)


  1. Ahmed N, Glacer M (2016) Can “integrated multi-trophic aquaculture (IMTA)” adapt to climate change in coastal Bangladesh? Ocean Coast Manage 132:120–131CrossRefGoogle Scholar
  2. Berezina NA, Golubkov SM (2008) Effect of drifting macroalgae Cladophora glomerata on benthic community dynamics in the easternmost Baltic Sea. J Mar Syst 74:S80–S85Google Scholar
  3. Bergström L, Bergström U (1999) Species diversity and distribution of aquatic macrophytes in the Northern Quark, Baltic Sea. Nord J Bot 19:375–383CrossRefGoogle Scholar
  4. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Biores Tech 102:2595–2604CrossRefGoogle Scholar
  5. Brown MT, Depledge MH (1998) Determinants of trace metal concentrations in marine organisms. In: Langston W, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman & Hall, London, pp 185–217CrossRefGoogle Scholar
  6. Bucholc K, Szymczak-Źyła M, Lubecki L, Zamojska A, Hapter P, Tjernström E, Kowalewska G (2014) Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci Total Environ 473–474:298–307CrossRefPubMedGoogle Scholar
  7. Carrilho ENVM, Gilbert TR (2000) Assessing metal sorption on the marine alga Pilayella littoralis. J Environ Monit 2:410–415Google Scholar
  8. Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19:109–111Google Scholar
  9. Chan SM, Wang W-X, Ni I-H (2003) The uptake of Cd, Cr, and Zn by the macroalga Enteromorpha crinita and subsequent transfer to the marine herbivorous Rabbitfish, Siganus canaliculatus. Arch Environ Contam Toxicol 44:298–306CrossRefPubMedGoogle Scholar
  10. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Tech 99:4044–4064CrossRefGoogle Scholar
  11. Chmielewská E, Medved’ J (2001) Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat Chem Acta 74:135–145Google Scholar
  12. Cranford PJ, Reid GK, Robinson SMC (2013) Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aquacult Env Interact 4:163–173Google Scholar
  13. Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J (2016) Role of deposit feeders in integrated multi-trophic aquaculture—a model analysis. Aquaculture 453:54–66CrossRefGoogle Scholar
  14. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330CrossRefPubMedGoogle Scholar
  15. Dubrovskis V, Plume I, Kazulis V, Celms A, Kotelenecs V, Zabarovskis E (2012) Biogas production potential from agricultural biomass and organic residues in Latvia. In: Malinovska L, Osadcuks V (eds) 11th International Scientific Conference – Engineering for Rural Development Proceedings, vol. 11. Latvia University of Agriculture, Faculty of Engineering, pp 566–571.; searched on 16 November 2015
  16. Eklöf JS, de la Torre CM, Adelsköld L, Jiddawi NS, Kautsky N (2005) Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar Coast Shelf Sci 63:385–396CrossRefGoogle Scholar
  17. European Union (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). searched on 10 June 2016
  18. Filipkowska A, Lubecki L, Szymczak-Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273Google Scholar
  19. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60CrossRefGoogle Scholar
  20. Grasshoff K, Erhardt M, Kremling K (eds) (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, pp. 125–187Google Scholar
  21. Grote B (2016) Bioremediation of aquaculture wastewater: evaluating the prospects of the red alga Palmaria palmata (Rhodophyta) for nitrogen uptake. J Appl Phycol 28:3075–3082CrossRefGoogle Scholar
  22. Grünewald N, Groth I, Alban S (2009) Evaluation of seasonal variations of the structure and anti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseria sanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules 10:1155–1162CrossRefPubMedGoogle Scholar
  23. Gubelit YI (2009) Biomass and primary production of Cladophora glomerata (L.) Kütz. in the Neva estuary. Inland Water Biol 2:300–304CrossRefGoogle Scholar
  24. Gubelit YI, Berezina NA (2010) The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar Pollut Bull 61:183–188CrossRefPubMedGoogle Scholar
  25. Hadley S, Wild-Allen K, Johnson C, Macleod C (2015) Modeling macroalgae growth and nutrient dynamics for integrated multi-trophic aquaculture. J Appl Phycol 27:901–916CrossRefGoogle Scholar
  26. He P, Xu S, Zhang H, Wen S, Dai Y, Lin S, Yarish C (2008) Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 42:1281–1289CrossRefPubMedGoogle Scholar
  27. HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc, No. 115BGoogle Scholar
  28. Hjerne O, Hansson S (2002) The role of fish and fisheries in Baltic Sea nutrient dynamics. Limnol Oceanogr 47:1023–1032CrossRefGoogle Scholar
  29. Huo YZ, Xu SN, Wang YY, Zhang JH, Zhang YJ, Wu WN, Chen YQ, He PM (2011) Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China. J Appl Phycol 23:173–182CrossRefGoogle Scholar
  30. ISO 17294-2 (2003) Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—part 2: determination of 62 elementsGoogle Scholar
  31. Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178CrossRefGoogle Scholar
  32. Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Tech 135:182–190CrossRefGoogle Scholar
  33. Kangas P, Autio H (1986) Macroalgae as indicators of heavy metal pollution. Publications of the Water Research Institute. National Board of Waters, Helsinki, No. 68Google Scholar
  34. Kersen P (2013) Red seaweeds Furcellaria lumbricalis and Coccotylus truncatus: community structure, dynamics and growth in the northern Baltic Sea. Dissertation, Tallinn University, Estonia 127 ppGoogle Scholar
  35. Kiirikki M, Lehvo A (1997) Life strategies of filamentous algae in the northern Baltic proper. Sarsia 82:259–267CrossRefGoogle Scholar
  36. Korzen L, Abelson A, Israel A (2016) Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28:1835–1845CrossRefGoogle Scholar
  37. Kraufvelin P, Ruuskanen AT, Nappu N, Kiirikki M (2007) Winter colonisation and succession of filamentous macroalgae on artificial substrates and possible relationships to Fucus vesiculosus in early summer. Estuar Coast Shelf Sci 72:665–674CrossRefGoogle Scholar
  38. Kumari R, Kaur I, Bhatnagar AK (2013) Enhancing soil health and productivity of Lycopersicon esculentum Mill. using Sargassum johnstonii Setchell & Gardner as a soil conditioner and fertilizer. J Appl Phycol 25:1225–1235CrossRefGoogle Scholar
  39. Lehvo A, Bäck S (2001) Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquatic Conserv: Mar Freshw Ecosyst 11:11–18CrossRefGoogle Scholar
  40. Leskinen E (1984) Colonization of periphytic organisms on artificial substrata on the southwestern coast of Finland. Ophelia Suppl 3:137–146Google Scholar
  41. Lindahl O, Kollberg S (2008) How mussels can improve coastal water quality. Mussel farming—a way to combat eutrophication. Bioscience Explained 5:1–14.Google Scholar
  42. Lundberg C, Lönnroth M, von Numers M, Bonsdorff E (2005) A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Mar Pollut Bull 50:1185–1196CrossRefPubMedGoogle Scholar
  43. MAA- Ja Metsätalousministeriö (2011) Asetus nro 24/11. Accessed 10 June 2016
  44. Maar M, Saurel C, Landes A, Dolmer P, Petersen JK (2015) Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a dynamic energy budget model. J Marine Syst 148:48–55CrossRefGoogle Scholar
  45. Martin G, Paalme T, Torn K (2006) Seasonality pattern of biomass accumulation in a drifting Furcellaria lumbricalis community in the waters of the West Estonian Archipelago, Baltic Sea. J Appl Phycol 18:557–563CrossRefGoogle Scholar
  46. Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol 25:1777–1791CrossRefGoogle Scholar
  47. Murphy AE, Anderson IC, Luckenbach MW (2015) Enhanced nutrient regeneration at commercial hard clam (Mercenaria mercenaria) beds and the role of macroalgae. Mar Ecol Prog Ser 530:135–151CrossRefGoogle Scholar
  48. Mäkinen T (ed) (2008) Fishery as a preventive action against the nutrient loading from fish farming: fish farming net loading system, a preliminary study. Riista- ja kalatalous – Selvityksiä 2/2008. Finnish Game and Fisheries Research Institute, HelsinkiGoogle Scholar
  49. Neushul M, Benson J, Harger BWW, Charters AC (1992) Macroalgal farming in the sea: water motion and nitrate uptake. J Appl Phycol 4:255–265CrossRefGoogle Scholar
  50. Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Møller HB (2012) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 3:449–458CrossRefGoogle Scholar
  51. Nóbrega JA, Pirola C, Fialho LL, Rota G, de Campos Jordão CEKMA, Pollo F (2012) Microwave-assisted digestion of organic samples: how simple can it become? Talanta 98:272–276CrossRefPubMedGoogle Scholar
  52. Nkemka VN, Murto M (2010) Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J Environ Manag 91:1573–1579CrossRefGoogle Scholar
  53. Nkemka VN, Murto M (2012) Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilization. Process Biochem 47:2523–2526CrossRefGoogle Scholar
  54. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech 2:171–185CrossRefPubMedCentralGoogle Scholar
  55. Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163CrossRefGoogle Scholar
  56. Pérez-Camacho A, Labarta U, Vinseiro V, Fernández-Reiriz MJ (2013) Mussel production management: raft culture without thinning-out. Aquaculture 406–407:172–179CrossRefGoogle Scholar
  57. Peu P, Sassi J-F, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Biores Technol 102:10794–10802Google Scholar
  58. Protasowicki M, Dural M, Jaremek J (2008) Trace metals in the shells of blue mussels (Mytilus edulis) from the Poland coast of Baltic Sea. Environ Monit Assess 141:329–337CrossRefPubMedGoogle Scholar
  59. Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951CrossRefPubMedPubMedCentralGoogle Scholar
  60. Reddy CRK, Jha B, Fujita Y, Ohno M (2008) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617CrossRefGoogle Scholar
  61. Reid GK, Liutkus M, Bennett A, Robinson SMC, MacDonald B, Page F (2010) Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: implications for integrated multi-trophic aquaculture. Aquaculture 299:165–169CrossRefGoogle Scholar
  62. Richardson CA, Chenery SRN, Cook JM (2001) Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation—ICP-MS of horse mussel Modiolus modiolus shells. Mar Ecol Prog Ser 211:157–167CrossRefGoogle Scholar
  63. Risén E, Tatarchenko O, Gröndahl F, Malmström ME (2014) Harvesting of drifting filamentous macroalgae in the Baltic Sea: an energy assessment. J Renew Sust Energy 6(1):013116CrossRefGoogle Scholar
  64. Riekie GJ, Williams PN, Raab A, Meharg AA (2006) The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands. Chemosphere 65:332–342CrossRefPubMedGoogle Scholar
  65. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. The U.S. Department of Energy, Pacific Northwest National Laboratory, PNNL-19944, Richland, WashingtonCrossRefGoogle Scholar
  66. Roos C, Rönnberg O, Berglund J, Alm A (2004) Long-term changes in macroalgal communities along ferry routes in a northern Baltic archipelago. Nord J Bot 23:247–259CrossRefGoogle Scholar
  67. Rößner Y, Krost P, Schulz C (2014) Increasing seaweed crop yields through organic fertilisation at the nursery stage. J Appl Phycol 26:753–762CrossRefGoogle Scholar
  68. Salovius S, Kraufvelin P (2004) The filamentous green alga Cladophora glomerata as a habitat for littoral macro-fauna in the northern Baltic Sea. Ophelia 58:65–78CrossRefGoogle Scholar
  69. Seghetta M, Østergård H, Bastianoni S (2014) Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock. Ecol Model 288:25–37CrossRefGoogle Scholar
  70. Shahbazi F, Seyyed Nejad M, Salimi A, Gilani A (2015) Effect of seaweed extracts on the growth and biochemical constituents of wheat. Intl J Agri Crop Sci 8:283–287Google Scholar
  71. Sheng PX, Ting Y-P, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141CrossRefPubMedGoogle Scholar
  72. Solorzano L, Sharp JH (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–758CrossRefGoogle Scholar
  73. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18CrossRefGoogle Scholar
  74. USEPA (2007) METHOD 3051A. Microwave assisted acid digestion of sediments, sludges, soils, and oils. Revision 1, February 2007.; searched on 15 May 2016
  75. Vahteri P, Mäkinen A, Salovius S, Vuorinen I (2000) Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? Ambio 29:338–343CrossRefGoogle Scholar
  76. Vallius H, Leivuori M (1999) The distribution of heavy metals and arsenic in recent sediments in the Gulf of Finland. Boreal Env Res 4:19–29Google Scholar
  77. Voigt H-R (2007) Heavy metal concentrations in four-horn sculpin Triglopsis quadricornis (L.) (Pisces), its main food organism Saduria entomon L. (Crustacea), and in bottom sediments in the Archipelago Sea and the Gulf of Finland (Baltic Sea). Proc Estonian Acad Sci Biol Ecol 56:224–238Google Scholar
  78. Wallin M, Håkanson L, Persson J (1992) Load models for nutrients in coastal areas, especially from fish farms. Nordiska ministerrådet, Copenhagen 207 pp (in Swedish with English summary)Google Scholar
  79. Weldrick CK, Jelinski DE (2016) Resource subsidies from multi-trophic aquaculture affect isotopic niche width in wild blue mussels (Mytilus edulis). J Marine Syst 157:118–123CrossRefGoogle Scholar
  80. Wu C, Li D, Liu H, Peng G, Liu J (2004) Mass culture of Undaria gametophyte clones and their use in sporeling culture. Hydrobiologia 512:153–156CrossRefGoogle Scholar
  81. Wulff C, Humborg C, Andersen HE, Blicher-Mathiesen G, Czajkowski M, Elofsson K, Fonnesbech-Wulff A, Hasler B, Hong B, Jansons V, Mörth C-M, Smart JCR, Smedberg E, Stålnacke P, Swaney DP, Thodsen H, Was A, Żylicz T (2014) Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio 43:11–25CrossRefPubMedPubMedCentralGoogle Scholar
  82. Xu B, Zhang QS, Qu SC, Cong YZ, Tang XX (2009) Introduction of a seedling production method using vegetative gametophytes to the commercial farming of Laminaria in China. J Appl Phycol 21:171–178CrossRefGoogle Scholar
  83. Zhou Y, Yang H, Hu H, Liu Y, Mao Y, Zhou H, Xu X, Zhang F (2006) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of North China. Aquaculture 252:264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
  3. 3.Finnish Environment InstituteHelsinkiFinland

Personalised recommendations