Advertisement

Journal of Applied Phycology

, Volume 29, Issue 5, pp 2267–2275 | Cite as

Population biology and long-term mariculture studies in the brown alga Lessonia trabeculata in Atacama, Chile

  • Renato Westermeier
  • Pedro Murúa
  • David J. Patiño
  • Dieter G. Müller
22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN

Abstract

Lessonia trabeculata is one of the most valuable seaweeds in Chile, especially in the northern zone where its harvest has been going on for decades. We carried out population dynamics studies in the Atacama Desert coast (Bahia Chasco), in order to assess its productivity under natural and harvesting scenarios. We found very slow but consistent growth (1.98 cm month−1) and density (3–4 individuals m−2 with no monthly variation) during 18 months of observations in an undisturbed subpopulation. However, after total harvesting, L. trabeculata exhibited different responses. Its recruitment was season-specific, with exceedingly high values in autumn (ca. 80 individuals m−2 in 5 months) and a dramatic reduction of recruits in summer (1–5 individuals m−2 in 7 months, with many areas with no recruitment). Gradually, density values tended to stabilize to growth rates under un-altered conditions. In parallel, pruning systems at three different thallus levels (frond meristem base cuts, removal of half and total canopy) were all inefficient and harmful: (i) Biomass takes longer to be harvested; (ii) pruned individuals die off; and (iii) do not detach easily from the substrata, delaying the recovery by potentially emerging L. trabeculata juveniles. Some of these results agreed with our culture experiments, where 26 months were needed to obtain up to 100 cm long thalli with shrub-like morphology. We conclude that management of L. trabeculata beds must be improved in order to guarantee survival of the industry, and we propose some practices that at some stage should involve the complete removal of older/senescent individuals.

Keywords

Lessonia trabeculata Huiro palo Population dynamic Kelp aquaculture Wild harvest Pruning Sustainable management 

Notes

Acknowledgements

Laboratory and field support by L. Muñoz, C. Atero and C. Soza and the logistic help by E. Canto (Hidrocultivos S.A., Bahia Inglesa) and local fishermen (Bahia Chasco) are acknowledged. The valuable feedback from two anonymous reviewers helped to improve the latest version of the manuscript. The authors also thank to the projects 33-91-243 (FIC Atacama 2013) and 09PDAC- 6896 (CORFO), granted to the Universidad Austral de Chile (RW). PM is currently funded by Conicyt (Becas Chile N° 72130422) for PhD studies at the University of Aberdeen.

References

  1. Borras-Chavez R, Edwards M, Vásquez JA (2012) Testing sustainable management in northern Chile: harvesting Macrocystis pyrifera (Phaeophyceae, Laminariales). A Case Study J Appl Phycol 24:1655–1665CrossRefGoogle Scholar
  2. Camus P, Ojeda F (1992) Scale-dependent variability of density estimates and morphometric relationships in subtidal stands of the kelp Lessonia trabeculata in northern and Central Chile. Mar Ecol Prog Ser 90:193–200CrossRefGoogle Scholar
  3. Castilla JC, Campo MA, Bustamante RH (2007) Recovery of Durvillaea antarctica (Durvilleales) inside and outside Las Cruces marine reserve, Chile. Ecol Appl 17:1511–1522CrossRefPubMedGoogle Scholar
  4. Cho GY, Klochkova NG, Krupnova TN, Boo SM (2006) The reclassification of Lessonia laminarioides (Laminariales, Phaeophyceae): Pseudolessonia gen. nov. J Phycol 42:1289–1299Google Scholar
  5. Demes KW, Graham MH, Suskiewicz TS (2009) Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp, Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J Phycol 45:1266–1269CrossRefPubMedGoogle Scholar
  6. Edding ME, Tala FB (2003) Development of techniques for the cultivation of Lessonia trabeculata Villouta et Santelices ( Phaeophyceae : Laminariales ) in Chile. 507–515Google Scholar
  7. Edding ME, Fonck E, Orrego P, Vanegas M, Macchiavello J (1993) A comparison between two populations of Lessonia trabeculata (Phaeophyta: Laminariales) microscopic stages. Hydrobiologia 260/261:231–237Google Scholar
  8. Escudero C, Gutierrez X, Aguilera AB, et al. (2015) Seasonal monitoring of heavy metal and arsenic pollution in the mining area of Atacama (Chile) and development of a low cost water treatment prototype. In: European Meeting on Environmental Chemistry. Bern, pp 1–2Google Scholar
  9. Evans GC (1992) The quantitative analysis of plant growth. In: Evans GC (ed) Studies in ecology. Blackwell Scientific Publishers, Oxford, pp. 247–254Google Scholar
  10. Hoffmann AJ, Santelices B (1997) Marine Flora of Central Chile. Ediciones Universidad Cátolica de Chile, SantiagoGoogle Scholar
  11. Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Manoli MG, Sotomayor A, Westermeier RC, et al. (2015) Evaluación de una estrategia de detoxificacion de efluentes contaminados con metales pesados utilizando algas marinas chilenas. Informe final proyecto FIC 2013 33–91-243. CopiapóGoogle Scholar
  13. Martin P, Zuccarello GC (2012) Molecular phylogeny and timing of radiation in Lessonia (Phaeophyceae, Laminariales). Phycol Res 60:276–287CrossRefGoogle Scholar
  14. Murúa P, Westermeier R, Patino DJ, Müller DG (2013) Culture studies on early development of Lessonia trabeculata (Phaeophyceae, Laminariales): seasonality and acclimation to light and temperature. Phycol Res 61:145–153CrossRefGoogle Scholar
  15. Ortiz M (2010) Dynamic and spatial models of kelp forest of Macrocystis integrifolia and Lessonia trabeculata (SE Pacific) for assessment harvest scenarios: short-term responses. Aquat Conserv Mar Freshw Ecosyst 20:494–506CrossRefGoogle Scholar
  16. R Core Team (2013) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  17. Sáez CA, Lobos MG, Macaya EC, Oliva D, Quiroz W, Brown MT (2012) Variation in patterns of metal accumulation in thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae): implications for biomonitoring. PLoS One 7:e50170CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schiel DR, Foster MS (2015) The biology and ecology of giant kelp forests. University of California PressGoogle Scholar
  19. Sernap (1990) Anuario Estadístico de Pesca 1989. www.sernapesca.cl. Accessed 15 Apr 2016Google Scholar
  20. Stotz WB, Aburto J, Caillaux LM, González SA (2016) Vertical distribution of rocky subtidal assemblages along the exposed coast of north-Central Chile. J Sea Res 107:34–47CrossRefGoogle Scholar
  21. Tala F, Edding M (2005) Growth and loss of distal tissue in blades of Lessonia nigrescens and Lessonia trabeculata (Laminariales). Aquat Bot 82:39–54CrossRefGoogle Scholar
  22. Tala F, Edding M, Vásquez J (2004) Aspects of the reproductive phenology of Lessonia trabeculata (Laminariales: Phaeophyceae) from three populations in northern Chile. N Z J Mar Freshw Res 38:255–266CrossRefGoogle Scholar
  23. Uribe RA, Ortiz M, Macaya EC, Pacheco AS (2015) Successional patterns of hard-bottom macrobenthic communities at kelp bed (Lessonia trabeculata) and barren ground sublittoral systems. J Exp Mar Biol Ecol 472:180–188CrossRefGoogle Scholar
  24. Vásquez JA (1991) Variables morfometricas y relaciones morfologicas de Lessonia trabeculata Vilouta &Santelices 1986, en una poblacion submareal Del Norte de Chile. Rev Chil Hist Nat 64:271–279Google Scholar
  25. Vásquez JA (2008) Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J Appl Phycol 20:457–467CrossRefGoogle Scholar
  26. Vásquez JA, Buschmann AH (1997) Herbivore-kelp interactions in Chilean subtidal communities: a review. Rev Chil Hist Nat 70:41–52Google Scholar
  27. Vásquez JA, Santelices B (1990) Ecological effects of harvesting Lessonia (Laminariales, Phaeophyta) in Central Chile. Hydrobiologia 205/205:41–47Google Scholar
  28. Vásquez JA, Vega JMA, Buschmann AH (2006) Long term variability in the structure of kelp communities in northern Chile and the 1997-98 ENSO. J Appl Phycol 18:505–519CrossRefGoogle Scholar
  29. Villegas MJ, Laudien J, Sielfeld W, Arntz WE (2008) Macrocystis integrifolia And Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community off northern Chile. Helgol Mar Res 62:33–43CrossRefGoogle Scholar
  30. Villouta E, Santelices B (1984) Estructura de la comunidad submareal de Lessonia (Phaeophyta, Laminariales) en Chile norte y central. Rev Chil Hist Nat 57:111–122Google Scholar
  31. Villouta E, Santelices B (1986) Lessonia trabeculata sp. nov. (Laminariales, Phaeophyta), a new kelp from Chile. Phycologia 25:81–86CrossRefGoogle Scholar
  32. Westermeier R, Müller DG, Gómez I, Rivera P, Wenzel H (1994) Population biology of Durvillaea antarctica and Lessonia nigrescens (Phaeophyta) on the rocky shores of southern Chile. Mar Ecol Prog Ser 110:187–194CrossRefGoogle Scholar
  33. Westermeier R, Patiño DJ, Piel MI, Müller DG (2005) Manual de cultivo de Macrocystis pyrifera (huiro) en Chile, Proyecto F. Universidad Austral de Chile, Puerto MonttGoogle Scholar
  34. Westermeier R, Patiño DJ, Piel MI, Maier I, Mueller DG (2006) A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquac Res 37:164–171CrossRefGoogle Scholar
  35. Westermeier R, Sotomayor A, Blanc J, et al. (2011) Informe final: Perfil del Recurso Lessonia trabeculata como especie candidata para el Programa de diversificación acuícola 09 PDAC-6896. Puerto MonttGoogle Scholar
  36. Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2014) Giant kelp (Macrocystis) fishery in Atacama (northern Chile): biological basis for management of the integrifolia morph. J Appl Phycol 26:1071–1079CrossRefGoogle Scholar
  37. Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2016) Holdfast fragmentation of Macrocystis pyrifera (integrifolia morph) and Lessonia Berteroana in Atacama (Chile): a novel approach for kelp bed restoration. J Appl Phycol 28:2969–2977CrossRefGoogle Scholar
  38. Wickham H (2009) ggplot2. Elegant graphics for data analysis. Springer, New YorkGoogle Scholar
  39. Zavala P, Diaz H, Araneda P (2010) Segundo monitoreo de la biomasa de Macrocystis integrifolia (huiro canutillo), Lessonia trabeculata (huiro palo) y Heterozostera chilensis (pasto marino), mediante técnicas de teledetección aeroespacial en Bahía Chasco, Region de Atacama. Informe técnicoGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Renato Westermeier
    • 1
  • Pedro Murúa
    • 1
    • 2
    • 3
  • David J. Patiño
    • 1
  • Dieter G. Müller
    • 4
  1. 1.Instituto de AcuiculturaUniversidad Austral de Chile, Sede Puerto MonttPuerto MonttChile
  2. 2.Oceanlab, University of AberdeenNewburghUK
  3. 3.The Scottish Association for Marine ScienceScottish Marine Institute, Culture Collection for Algae and ProtozoaArgyllUK
  4. 4.Fachbereich Biologie der Universität KonstanzKonstanzGermany

Personalised recommendations