Journal of Applied Phycology

, Volume 29, Issue 2, pp 879–888 | Cite as

Screening of BMAA-producing cyanobacteria in cultured isolates and in in situ blooms

  • Marta Monteiro
  • Margarida Costa
  • Cristiana Moreira
  • Vitor M. Vasconcelos
  • Mafalda S. Baptista


The amino acid β-N-methylamino-L-alanine (BMAA) was screened in 23 cyanobacteria strains, isolated from freshwater, estuarine, or marine environments, and at 7 freshwater locations supporting recurrent cyanobacteria blooms. BMAA was present in one estuarine and one marine strain. The estuarine strain Nostoc sp. 06077, a diazotrophic cyanobacterium, had BMAA growing in a marine-based as well as in a freshwater-based culture medium, with and without nitrogen supplementation. Testing of more than one culture medium showed that no one prevailed for the production of BMAA. In field samples comprising blooms, BMAA was also not detected (the limit of quantification of the method being 0.83 μg g−1). Highlighting that the mechanism by which BMAA-producing cultures emerge is still not elucidated, BMAA could not be related to the morphological or phylogenetic diversity of the strains or geographical origin.


BMAA Cyanobacteria Coastal environments Harmful algae blooms Neurotoxins 



The authors wish to thank the European Cooperation in Science and Technology, COST Action ES1105 “CYANOCOST—Cyanobacterial blooms and toxins in water resources: Occurrence, impacts and management” for adding value to this study through networking and knowledge sharing with European experts and researchers in the field.


This work was funded by the Fundação para a Ciência e a Tecnologia, Portugal (UID/Multi/04423/2013, SFRH/BPD/104466/2014).


  1. Aráoz R, Molgó J, De Marsac NT (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813–828CrossRefPubMedGoogle Scholar
  2. Banack SA, Cox PA (2003) Distribution of the neurotoxic nonprotein amino acid BMAA in Cycas micronesica. Bot J Linn Soc 143:165–168CrossRefGoogle Scholar
  3. Banack SA, Johnson HE, Cheng R, Cox PA (2007) Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 5:180–196CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baptista MS, Cianca RC, Lopes VR, Almeida CMR, Vasconcelos VM (2011) Determination of the non protein amino acid β-N-methylamino-L-alanine in estuarine cyanobacteria by capillary electrophoresis. Toxicon 58:410–414CrossRefPubMedGoogle Scholar
  5. Baptista MS, Vasconcelos RGW, Ferreira PC, Almeida CMR, Vasconcelos VM (2015) Assessment of the non-protein amino acid BMAA in Mediterranean mussel Mytilus galloprovincialis after feeding with estuarine cyanobacteria. Environ Sci Pollut Res 22:12501–12510CrossRefGoogle Scholar
  6. Batoréu MCC, Dias E, Pereira P, Franca S (2005) Risk of human exposure to paralytic toxins of algal origin. Environ Toxicol Pharmacol 19:401–406CrossRefPubMedGoogle Scholar
  7. Bell EA (2003) Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51:2854–2865CrossRefPubMedGoogle Scholar
  8. Bergström AK, Jonsson A, Jansson M (2008) Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition. Aquat Biol 4:55–64CrossRefGoogle Scholar
  9. Berntzon L, Erasmie S, Celepli N, Eriksson J, Rasmussen U, Bergman B (2013) BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120. Mar Drugs 11:3091–3108CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boopathi T, Ki JS (2014) Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6:1951–1978CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM (2016) Identification of conserved and potentially regulatory small RNAs in heterocystous cyanobacteria. Front Microbiol 7:48. doi: 10.3389/fmicb.2016.00048 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KF, Palenchar PM, Runko SJ, Twigg RW, Dai G, Martienssen RA, Benfey PN, Coruzz GM (2003) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4:R78. doi: 10.1201/b12226-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7:e29981CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brito Â, Ramos V, Seabra R, Santos A, Santos CL, Lopo M, Ferreira S, Martins A, Mota R, Frazão B, Martins R, Vasconcelos V, Tamagnini P (2012) Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphasic study. Syst Appl Microbiol 35:110–119CrossRefPubMedGoogle Scholar
  15. Brito Â, Gaifem J, Ramos V, Glukhov E, Dorrestein PC, Gerwick WH, Vasconcelos VM, Mendes MV, Tamagnini P (2015) Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Res 9:218–226CrossRefGoogle Scholar
  16. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, LondonCrossRefGoogle Scholar
  17. Chorus I, Falconer IR, Salas HJ, Bartram J (2000) Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Env Health B 3:323–347CrossRefGoogle Scholar
  18. Cianca RCC, Baptista MS, Lopes VR, Vasconcelos VM (2012) The non-protein amino acid β-N-methylamino-L-alanine in Portuguese cyanobacterial isolates. Amino Acids 42:2473–2479CrossRefGoogle Scholar
  19. Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272CrossRefPubMedGoogle Scholar
  20. Cohen SA (2012) Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst 137:1991–2005CrossRefPubMedGoogle Scholar
  21. Costa M, Garcia M, Costa-Rodrigues J, Costa MS, Ribeiro MJ, Fernandes MH, Barros P, Barreiro A, Vasconcelos V, Martins R (2014) Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: high potential as a source of anticancer compounds. Mar Drugs 12:98–114CrossRefGoogle Scholar
  22. Costa MS, Costa M, Ramos V, Leão PN, Barreiro A, Vasconcelos V, Martins R (2015) Picocyanobacteria from a clade of marine Cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. J Toxicol Env Health A 78:432–442CrossRefGoogle Scholar
  23. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrinson LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078CrossRefPubMedPubMedCentralGoogle Scholar
  24. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  25. Downing S, Banack SA, Metcalf JS, Cox PA, Downing TG (2011) Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine. Toxicon 58:187–194CrossRefPubMedGoogle Scholar
  26. European Union (2002) Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002) OJ L 221/8 (2002/657/EC)Google Scholar
  27. Faassen EJ (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6:1109–1138CrossRefPubMedPubMedCentralGoogle Scholar
  28. Faassen EJ, Gillissen F, Zweers HA, Lürling M (2009) Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-, γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10(S2):79–84CrossRefPubMedGoogle Scholar
  29. Faassen EJ, Gillissen F, Lürling M (2012) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 7:e36667CrossRefPubMedPubMedCentralGoogle Scholar
  30. Faassen EJ, Antoniou MG, Beekman-Lukassen W, Blahova L, Chernova E, Christophoridis C, Combes A, Edwards C, Fastner J, Harmsen J, Hiskia A, Ilag LL, Kaloudis T, Lopicic S, Lürling M, Mazur-Marzec H, Meriluoto J, Porojan C, Viner-Mozzini Y, Zguna N (2016) A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction. Mar Drugs 14:45. doi: 10.3390/md14030045 CrossRefPubMedCentralGoogle Scholar
  31. Fan H, Qiu J, Fan L, Li A (2015) Effects of growth conditions on the production of neurotoxin 2,4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. Environ Sci Pollut Res 22:5943–5951CrossRefGoogle Scholar
  32. Gehringer MM, Adler L, Roberts AA, Moffitt MC, Mihali TK, Mills TJ, Fieker C, Neilan BA (2012) Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J 6:1834–1847CrossRefPubMedPubMedCentralGoogle Scholar
  33. Holland A, Kinnear S (2013) Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11:2239–2258CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jähnichen S, Ihle T, Petzoldt T, Benndorf J (2007) Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 73:6994–7002CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiang L, Johnston E, Åberg KM, Nilsson U, Ilag LL (2013) Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS. Anal Bioanal Chem 405:1283–1292CrossRefPubMedGoogle Scholar
  36. Jonasson S, Eriksson J, Berntzon L, Spáčil Z, Ilag LL, Ronnevi LO, Rasmussen U, Bergman B (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci U S A 107:9252–9257CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065CrossRefPubMedGoogle Scholar
  38. Karamyan VT, Septh RC (2008) Animal models of BMAA neurotoxicity: a critical review. Life Sci 82:233–246CrossRefPubMedGoogle Scholar
  39. Kellmann R, Michali TK, Neilan BA (2008) Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J Mol Evol 67:526–538CrossRefPubMedGoogle Scholar
  40. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae Norwegian Institute for Water Research. Oslo 11:5Google Scholar
  41. Krüger T, Mönch B, Oppenhäuser S, Luckas B (2010) LC–MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547–557CrossRefPubMedGoogle Scholar
  42. Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A, Rydberg S (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ Sci Pollut Res 23:338–350CrossRefGoogle Scholar
  43. Leão PN, Ramos V, Gonçalves PB, Viana F, Lage OM, Gerwick WH, Vasconcelos VM (2013) Chemoecological screening reveals high bioactivity in diverse culturable Portuguese marine cyanobacteria. Mar Drugs 11:1316–1335CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li A, Tia Z, Li J, Yu R, Banack SA, Wang Z (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55:947–953CrossRefPubMedGoogle Scholar
  45. Li A, Fan H, Ma F, McCarron P, Thomas K, Tang X, Quilliam MA (2012) Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-l-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 137:1210–1219CrossRefPubMedGoogle Scholar
  46. Lopes VR, Ramos V, Martins A, Sousa M, Welker M, Antunes A, Vasconcelos VM (2012) Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Mar Environ Res 73:7–16CrossRefPubMedGoogle Scholar
  47. Martins R, Fernandez N, Beiras R, Vasconcelos VM (2007) Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains to marine invertebrates. Toxicon 50:791–799CrossRefPubMedGoogle Scholar
  48. Mbedi S, Welker M, Fastner J, Wiedner C (2005) Variability of the microcystin synthetase gene cluster in the genus Planktothrix (Oscillatoriales, cyanobacteria). FEMS Microbiol Lett 245:299–306CrossRefPubMedGoogle Scholar
  49. McCarron P, Logan AC, Giddings SD, Quilliam MA (2014) Analysis of β-N-methylamino-L-alanine (BMAA) in Spirulina-containing supplements by liquid chromatography-tandem mass spectrometry. Aquat Biosyst 10:5. doi: 10.1186/2046-9063-10-5 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA (2008) Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10:702–708CrossRefPubMedGoogle Scholar
  51. Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74:716–722CrossRefPubMedGoogle Scholar
  52. Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362CrossRefPubMedPubMedCentralGoogle Scholar
  53. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253CrossRefPubMedGoogle Scholar
  54. Nunn PB (2009) Three phases of research on β-N-methylamino-L-alanine (BMAA)—a neurotoxic amino acid. Amyotroph Lateral Scler 10:26–33CrossRefPubMedGoogle Scholar
  55. Perkerson RB III, Johansen JR, Kovácik L, Brand J, Kaštovský J, Casamatta DA (2011) A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen nov based on morphological and molecular data. J Phycol 47:1397–1412CrossRefGoogle Scholar
  56. Réveillon D, Abadie E, Séchet V, Brient L, Savar V, Bardouil M, Hess P, Amzil Z (2014) Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon. Mar Drugs 12:5441–5467CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rippka R (1988) Isolation and purification of cyanobacteria. In: Packer L, Glazer AN (eds) Methods in enzymology. Academic Press, San Diego, pp. 3–27Google Scholar
  58. Rosén J, Hellenäs KE (2008) Determination of the neurotoxin BMAA (β-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst 133:1785–1789CrossRefPubMedGoogle Scholar
  59. Rosén J, Westerberg E, Schmiedt S, Hellenäs KE (2016) BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon 109:45–50CrossRefPubMedGoogle Scholar
  60. Rosenthal G (1982) Plant nonprotein amino and imino acids: biological, biochemical, and toxicological properties. Academic Press Inc, New YorkGoogle Scholar
  61. Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005) Variation between strains of the cyanobacterium Microcystis aeruginosa isolated from a Portuguese river. J Appl Microbiol 99:749–757CrossRefPubMedGoogle Scholar
  62. Saker M, Vale M, Kramer D, Vasconcelos VM (2007) Molecular techniques for the early warning of toxic cyanobacteria blooms in in freshwater lakes and rivers. Appl Microbiol Biot 75:441–449CrossRefGoogle Scholar
  63. Schatz D, Keren Y, Hadas O, Carmeli S, Sukenik A, Kaplan A (2005) Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ Microbiol 7:798–805CrossRefPubMedGoogle Scholar
  64. Selheim F, Herfindal L, Martins R, Vasconcelos V, Stein OD (2005) Neuro-apoptogenic and thrombocyte function modulating toxins in non-blooming marine cyanobacteria from the Portuguese coast. Aquat Toxicol 74:294–306CrossRefPubMedGoogle Scholar
  65. Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104CrossRefGoogle Scholar
  66. Sivonen K, Jones G (1999) Cyanobacterial toxins in: chorus, I, Bartram, J (eds) toxic cyanobacteria in water: a guide to their public health consequence, monitoring and management. E&FN Spon, London, pp. 55–124Google Scholar
  67. Spáčil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B (2010) Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 135:127–132CrossRefPubMedGoogle Scholar
  68. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedPubMedCentralGoogle Scholar
  69. Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M (2014) Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins 6:1896–1915CrossRefPubMedPubMedCentralGoogle Scholar
  70. Van de Waal DB, Verspagen JM, Lürling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335CrossRefPubMedGoogle Scholar
  71. Vasconcelos VM (1994) Toxic cyanobacteria (blue-green algae) in Portuguese freshwaters. Arch Hydrobiol 130:439–451Google Scholar
  72. Vasconcelos VM (2001) Freshwater cyanobacteria and their toxins in Portugal. In: Chorus I (ed) Cyanotoxins: occurrence, causes and consequences. Springer, New York, pp. 62–67Google Scholar
  73. Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1996) Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Res 30:2377–2384CrossRefGoogle Scholar
  74. Vranova V, Rejsek K, Skene KR, Formanek P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48CrossRefGoogle Scholar
  75. Willis A, Adams MP, Chuang AW, Orr PT, O’Brien KR, Burford MA (2015) Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae 47:27–34CrossRefGoogle Scholar
  76. Yang Z, Kong F, Shi X, Yu Y, Zhang M (2015) Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain. J Hazard Mater 283:447–453CrossRefPubMedGoogle Scholar
  77. Yu L, Kong F, Shi X, Yang Z, Zhang M, Yu Y (2015) Effects of elevated CO2 on dynamics of microcystin-producing and non-microcystin-producing strains during Microcystis blooms. J Environ Sci 27:251–258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marta Monteiro
    • 1
    • 2
  • Margarida Costa
    • 1
  • Cristiana Moreira
    • 1
  • Vitor M. Vasconcelos
    • 1
    • 2
  • Mafalda S. Baptista
    • 1
  1. 1.CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations