Advertisement

Journal of Applied Phycology

, Volume 29, Issue 2, pp 821–832 | Cite as

The potential of microalgal biomass production for biotechnological purposes using wastewater resources

  • Graciela S. Diniz
  • Anita F. Silva
  • Ofelia Q. F. Araújo
  • Ricardo M. ChaloubEmail author
Article

Abstract

The utilization of microalgae for wastewater treatment represents an attractive opportunity for wastewater valorization through the use of the produced biomass. Five strains of microalgae were isolated from municipal wastewater and grown in autoclaved and non-autoclaved effluent at 30 °C and 150 μmol photons m−2 s−1 to study biomass production, nutrient removal, and the biochemical composition of the biomass. All strains reached high biomass productivity (35.6 to 54.2 mg dry weight L−1 day−1) within 4 days of batch culturing. In this period, ammonium-N and phosphate were reduced by more than 60 and 90 %, respectively. The high growth rate (0.57 to 1.06 day−1) ensured a rapid removal of nutrients and thereby a short retention time. By the fourth day of cultivation, the algal biomass contained 32 % protein, but only 11 % lipids and 18 % carbohydrates. It was found that the biomass was a suitable raw material for biogas production by anaerobic digestion. Biodigestion of obtained biomass was simulated by employing the Aspen HYSYS modeling software, resulting in methane yields comparable to those found in the literature. The elemental analysis of the algal biomass showed very low concentrations of pollutants, demonstrating the potential of use of the digestate from biodigestion as a bio-fertilizer.

Keywords

Wastewater treatment Nutrient removal Scenedesmus Desmodesmus Biomass composition Biogas 

Notes

Acknowledgments

We are indebted to the Moflo - Unidade multiusuários of the Federal University of Rio de Janeiro for making the flow cytometer available to us and to Dr. R. Pulleri for assistance with the nutrient determination techniques. Dr. A.G. Torres is gratefully acknowledged for providing facilities to determination of the biochemical composition of microalgal biomass. We thank Dr. Dgamar Frisch for the manuscript revision. This research received financial support from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) through grant E-26/111.973/2012, from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grants 404778/2013-5 and 405851/2013-8 and from Fundação Coordenação de Projetos, Pesquisas e Estudos Tecnológicos (Fundação COPPETEC-COPPE/UFRJ). G.S. Diniz was a recipient of a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Supplementary material

10811_2016_976_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 33 kb)

References

  1. Ali SAM, Razzak SA, Hossain MM (2015) Apparent kinetics of high temperature oxidative decomposition of microalgal biomass. Bioresour Technol 175:569–577CrossRefPubMedGoogle Scholar
  2. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  3. Bahr M, Díaz I, Dominguez A, Sánchez AG, Muñoz R (2014) Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol 48:573–581CrossRefPubMedGoogle Scholar
  4. Bellou S, Baeshed MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnology perspectives. Biotechnol Adv 32:1476–1493CrossRefPubMedGoogle Scholar
  5. Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp. 873–975CrossRefGoogle Scholar
  6. Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ (2015a) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotecnol 99:6139–6154CrossRefGoogle Scholar
  7. Bohutskyi P, Chow S, Ketter B, Adams KJ, Betenbaugh MJ, Bouwer EJ (2015b) Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion. Appl Energy 154:718–731CrossRefGoogle Scholar
  8. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt T, Bouwer EJ (2015c) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229–239CrossRefPubMedGoogle Scholar
  9. Borowitzka MA (2013) High value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  10. Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp. 601–652CrossRefGoogle Scholar
  11. Brazilian National Environmental Council (Conselho Nacional de Meio Ambiente - CONAMA) Resolution 430/2011. IOP Publishing PhysiscsWeb http://www.mmagovbr/conama. Acessed 15 Jan 2016
  12. Carmo CAFS, Araújo WS, Bernardi ACC, Saldanha MFC (2000) Métodos de análise de tecidos vegetais utilizados na embrapa solos. Embrapa Solos. Rio de Janeiro. Circular Técnica n° 6. ISSN 1517–5146.Google Scholar
  13. Cheng H, Tian G (2013) Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent. Desalin Water Treat 51:2768–2775CrossRefGoogle Scholar
  14. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefPubMedGoogle Scholar
  15. Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377CrossRefGoogle Scholar
  16. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337CrossRefGoogle Scholar
  17. Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383CrossRefGoogle Scholar
  18. Dubois M, Gilles KA, Hamilton JK, Reberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  19. Erickson JR (1985) An evaluation of mathematical models for the effect of pH and temperature on ammonia toxicity to aquatic organisms. Water Res 19:1047–1058CrossRefGoogle Scholar
  20. Folch J, Lees M, Sloanne-Stanley GH (1957) A simple method for the isolation and purification of total lipid from animal tissue. J Biol Chem 226:497–509PubMedGoogle Scholar
  21. García J, Green BF, Lundquist T, Mujeriego R, Hernández-Mariné M, Oswald WJ (2006) Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour Technol 97:1709–1715CrossRefPubMedGoogle Scholar
  22. Gilbert N (2009) The disappearing nutrient. Nature 461:716–718CrossRefPubMedGoogle Scholar
  23. Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B (2015) Anaerobic digestion of microalgal biomass: challenges opportunities and research needs. Bioresour Technol 198:896–906CrossRefPubMedGoogle Scholar
  24. Hernández D, Riaño B, García-González MC (2013) Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603CrossRefPubMedGoogle Scholar
  25. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefPubMedGoogle Scholar
  26. Jia Q, Xiang W, Yang F, Hu Q, Tang M, Chen C, Wang G, Dai S, Wu H, Wu H (2016) Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. J Appl Phycol 28:727–736CrossRefGoogle Scholar
  27. Jiménez-Pérez V, Sánchez-Castillo P, Romera O, Moreno-Fernández D, Pérez-Martínez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34:392–398CrossRefGoogle Scholar
  28. Kiran B, Pathak K, Kumar R, Desmukh D (2014) Cultivation of Chlorella sp IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecol Eng 73:326–330CrossRefGoogle Scholar
  29. Koroleff F (1969) Direct determination of ammonia in natural waters as indophenol blue ICES C M C. Hydr Comm:9Google Scholar
  30. Li WKW (2002) Macroecological pattern of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–157CrossRefPubMedGoogle Scholar
  31. Li Y, ChenY-F CP, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144CrossRefPubMedGoogle Scholar
  32. Liu K, Li J, Qiao H, Lin A, Wang G (2012) Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol 114:26–32CrossRefPubMedGoogle Scholar
  33. Liu C, Subashchandrabose S, Ming H, Xiao B, Naidu R, Megharaj M (2016) Phycoremediation of dairy and winery wastewater using Diplosphaera sp. MM1. J Appl Phycol. doi: 10.1007/s10811-016-0894-4 Google Scholar
  34. Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32CrossRefGoogle Scholar
  35. Louro CAL, Volschan I Jr, Ávila GM (2012) Sustentabilidade ambiental: estudo sobre o aproveitamento de nutrientes da urina humana para fins agrícolas. Revista eletrônica Sistema & Gestão 7(3):440–447CrossRefGoogle Scholar
  36. Lynch F, Santana-Sánchez A, Jämsä M, Sivonen K, Aro E-A, Allahverdiyeva Y (2015) Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Res 11:411–420CrossRefGoogle Scholar
  37. Mahapatra D, Chanakya HN, Ramachandra TV (2013) Euglena sp a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865CrossRefGoogle Scholar
  38. Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158CrossRefPubMedGoogle Scholar
  39. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  40. Ministry of Agriculture Livestook and Supply (Ministério da Agricultura Pecuária e Abastecimento) Normative instructions 27/2006. IOP Publishing Physiscs Web. http://www.agriculturagovbr. Acessed 15 January 2016
  41. Moree AL, Bensen AHW, Bonwman AF, Willems WJ (2013) Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Glob Biogeochem Cycles 27:836–846CrossRefGoogle Scholar
  42. Mulbry W, Kondrad S, Pizarro C (2006) Biofertilizers from algal treatment of dairy and swine manure effluents: characterization of algal biomass as a slow release fertilizer. J Veg Sci 12:107–125Google Scholar
  43. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefPubMedGoogle Scholar
  44. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  45. Murphy JD, Drosg D, Allen E, Jerney J, Xia A, Herrmann C (2015) A perspective on algal biogás. . IEA Bioenergy. http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf. Acessed 10 February 2016
  46. Myklestad S, Haug A (1972) Production of carbohydrates by the marine Chaetoceros affinis var willei (Gran) Hustedt I Effect of the concentration of nutrients in the culture medium. J Exp Mar Biol Ecol 9:125–136CrossRefGoogle Scholar
  47. Olsen LM, Sakshaug E, Johnsen G (2006) Photosynthesis-induced phosphate precipitation in seawater ecological implications for phytoplankton. Mar Ecol Prog Ser 319:103–110CrossRefGoogle Scholar
  48. Palmucci M, Ratti S, Giordano M (2011) Ecological and evolutionaty implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a Fourier transform infrared spectroscopy approach. J Phycol 47:313–323CrossRefPubMedGoogle Scholar
  49. Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348CrossRefGoogle Scholar
  50. Picardo MC, Medeiros JL, Monteiro JGM, Chaloub RM, Giordano M, Araújo OQF (2013) A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Technol Envir 15:275–291CrossRefGoogle Scholar
  51. Posadas E, Bochon S, Coca M, García-González PA, Muñoz R (2014) Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol 26:2335–2345CrossRefGoogle Scholar
  52. Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25:1529–1537CrossRefGoogle Scholar
  53. Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cells growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411CrossRefPubMedGoogle Scholar
  54. Samori G, Samori C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801CrossRefPubMedGoogle Scholar
  55. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotech Adv 27:409–416CrossRefGoogle Scholar
  56. Silva-Benavides AM, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24:267–276CrossRefGoogle Scholar
  57. Tan J, Wang J, Xue J, Liu S-Y, Peng S-C, Ma D, Chen T-H, Yue Z (2015) Methane production and microbial community analysis in the goethite facilitated anaerobic reactors using algal biomass Fuel. 145:196–201Google Scholar
  58. Vasquez-Montiel O, Horan NJ, Mara DD (1996) Management of domestic wastewater for reuse in irrigation. Water Sci Technol 33:355–362CrossRefGoogle Scholar
  59. Wang S, Ru B, Lin H, Sun W, Luo Z (2015) Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol 182:120–127CrossRefPubMedGoogle Scholar
  60. World Bank (2016). World development indicators 2016. http://data.worldbank.org/ Acessed 30 April 2016
  61. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall Inc, Upper Saddle RiverGoogle Scholar
  62. Zhang L, Lu H, Zhang Y, Li B, Liu Z, Duan N, Liu M (2016) Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. J Appl Phycol 28:1031–1039CrossRefGoogle Scholar
  63. Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909–6919CrossRefPubMedGoogle Scholar
  64. Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar
  65. Zimmo OR, van der Steen NP, Gijzen HJ (2003) Comparison of ammonia volatilization rates in algae and duckweed-based waste stabilization ponds treating domestic wastewater. Water Res 37:4587–4594CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Graciela S. Diniz
    • 1
  • Anita F. Silva
    • 2
  • Ofelia Q. F. Araújo
    • 3
  • Ricardo M. Chaloub
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-graduação em Biotecnologia VegetalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Bioquímica, Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de Engenharia Química, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations