Journal of Applied Phycology

, Volume 29, Issue 1, pp 595–605 | Cite as

Systematic evaluation of sample preparation method for simultaneous voltammetric determination of Zn, Cd, Pb, and Cu in macroalgae

  • Leandro S. Almeida
  • Nivia Streit
  • Daniel Costa
  • Elisa R. Seus
  • Carlos F. F. Andrade
  • Claudio M. P. Pereira
  • Pio Colepicolo
  • Daiane Dias
Article

Abstract

In this paper, four mineralization procedures of macroalgae were evaluated. Two methods used a closed system microwave) and two an open system (strong acid and ultraviolet radiation). Zn, Cd, Pb, and Cu were determined by square-wave anodic stripping voltammetry (SWASV) and graphite furnace atomic absorption spectrometry (GF AAS) was used as comparative method. Determinations of total, inorganic, and organic carbon, as well as the study of matrix effect, were performed. It could be observed that, although mineralizations accomplished with open systems presented lower levels of total carbon and lower matrix effect, the determinations of compounds from standard reference material (SRM) did not show acceptable recoveries. However, the mineralization using microwave (closed system—methods A and B) showed recovery within the acceptable range to all compounds (78 to 115 %), and after statistical analysis, it can be concluded that the method A is more accurate than the method B; therefore, most suitable for macroalgae mineralization and simultaneous determination of Zn, Cd, Pb, and Cu by voltammetry.

Keywords

Metals Macroalgae Mineralization Carbon total concentration Matrix effects Voltammetry 

Notes

Acknowledgments

The researchers gratefully acknowledge the financial support to the Brazilian Foundations FAPERGS, FAPESP and CNPq (ProAntar n° 407588/2013-2).

Compliance with ethical standards

Funding

This study was funded by CNPq (ProAntar n° 407588/2013–2).

References

  1. Agazzi A, Pirola C (2000) Fundamentals, methods and future trends of environmental microwave sample preparation. Microchem J 67:337–341CrossRefGoogle Scholar
  2. Akcali I, Kucuksezgin F (2011) A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Mar Poll Bull 62:637–645CrossRefGoogle Scholar
  3. Aleixo LM (2003) Voltametria: Conceitos e Técnicas. Chemkeys - Liberdade para aprender. http://chemkeys.com/br/2003/03/25/voltametria-conceitos-e-tecnicas/. Accessed 6 Apr 2016
  4. Arruda MAZ, Santelli RE (1997) Mecanização no preparo de amostras por microondas: o estado da arte. Quím Nov 20:638–643Google Scholar
  5. Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press, New YorkGoogle Scholar
  6. Brett AMO, Brett CMA (1996) Eletroquímica: princípios, métodos e aplicações. Almedina, CoimbraGoogle Scholar
  7. Brito GB, Souza TL, Bressy FC, Moura CWN, Korn MGA (2012) Levels and spatial distribution of trace elements in macroalgae species from the Todos os Santos Bay, Bahia, Brazil. Mar Poll Bull 64:2238–2244CrossRefGoogle Scholar
  8. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454CrossRefPubMedGoogle Scholar
  9. Campos MLAM, Mello LC, Zanette DR, Sierra MMS, Bendo A (2001) Construção e otimização de um reator de baixo custo para a fotodegradação da matéria orgânica em águas naturais e sua aplicação no estudo da especiação do cobre por voltametria. Quím Nov 24:257–261Google Scholar
  10. Carvalho LM, Spengler C, Garmatz JC, Nascimento PC, Bohrer D, Del-Fabro L, Radis G, Bolli AA, Garcia SC, Moro AM, Rosa MB (2008) Voltammetric determination of metals in waters and biological fluids using sample mineralization with ultraviolet radiation. Quím Nov 31:1336–1342Google Scholar
  11. Cavicchioli A, Gutz IGR (2003) O uso de radiação ultravioleta para o pré-tratamento de amostras em análise inorgânica. Quím Nov 26:913–921Google Scholar
  12. Chakraborty S, Bhattacharya T, Singh G, Maity JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf 100:61–68CrossRefPubMedGoogle Scholar
  13. Economou A, Botitsi H, Antoniou S, Tsipi D (2009) Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:5856–5867CrossRefPubMedGoogle Scholar
  14. Farı́as S, Arisnabarreta SP, Vodopivez C, Smichowski P (2002) Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochim Acta Part B 57:2133–2140CrossRefGoogle Scholar
  15. Gouvêa MM, Lima GS, Neto AAS, Netto ADP, Marques FFC (2014) Aplicação da radiação ultravioleta como forma de contribuição para a química verde e construção de um reator fotoquímico alternativo e de baixo custo, para pré-tratamento de amostras. Quím Nov 37:337–343Google Scholar
  16. Kowalska J, Giska I, Jedynak L, Krasnodebska-Ostrega B, Paldyna J, Sadowska M, Golimowski J (2012) Voltammetry as a reference method in the preparation process of plant control material containing As, Pt and Tl. Electroanal 24:1109–1113CrossRefGoogle Scholar
  17. Krasnodebska-Ostrega B, Piekarska J (2005) Determination of lead and cadmium at silver electrode by subtractive anodic stripping voltammetry in plant materials containing Tl. Electroanal 17:815–818CrossRefGoogle Scholar
  18. Krasnodebska-Ostrega B, Stryjewska E (2004) Voltammetric determination of thallium in water and plant material. Chem Anal-Warsaw 49:519–526Google Scholar
  19. Krasnodebska-Ostrega B, Bielecka A, Biadun E, Miecznikowski K (2016) Mesoporous film of WO3—the “sunlight” assisted decomposition of surfactant in wastewater for voltammetric determination of Pb. Appl Surf Sci. doi: 10.1016/j.apsusc.2016.03.187 Google Scholar
  20. Krug FJ (2010) Métodos de Preparo de Amostras: Fundamentos sobre preparo de amostras orgânicas e inorgânicas para análise elementar. Piracicaba, São PauloGoogle Scholar
  21. Labuda J, Saur D, Neeb R (1994) Anodic stripping voltammetric determination of heavy metals in solutions containing humic acids. Fresenius J Anal Chem 348:312–316CrossRefGoogle Scholar
  22. Lejbt B, Ospina-Alvarez N, Miecznikowski K, Krasnodebska-Ostrega B (2016) TiO2 assisted photo-oxidation of wastewater prior to voltammetric determination of trace metals: eco-friendly alternative to traditional digestion methods. Appl Surf Sci. doi: 10.1016/j.apsusc.2016.01.112 Google Scholar
  23. Machado ALS, Ferreira AG, Zalmon IR (2003) Metais pesados em macroalgas marinhas na costa norte do estado do Rio de Janeiro. Brasil. Tropical Oceanography 31:71–80Google Scholar
  24. Mahesar SA, Sherazi STH, Niaz A, Bhanger MI, Rauf A (2010) Simultaneous assessment of zinc, cadmium, lead and copper in poultry feeds by differential pulse anodic stripping voltammetry. Food Chem Toxicol 48:2357–2360CrossRefPubMedGoogle Scholar
  25. Martin JM, Huang WW, Yoon YY (1994) Level and fate of trace metals in the lagoon of Venice (Italy). Mar Chem 46:371–386CrossRefGoogle Scholar
  26. Meepun N, Siriket S, Dejmanee S (2012) Adsorptive stripping voltammetry for determination of cadmium in the presence of cupferron on a nafion-coated bismuth film electrode. Int J Electrochem Sci 7:10582–10591Google Scholar
  27. Meeravali NN, Kumar SJ (2000) Slurry-sampling with rapid atomization versus microwave digestion with conventional atomization for the determination of copper, manganese and nickel in algae matrix using transverse heated-electrothermal atomic absorption spectrometry. Anal Chim Acta 404:295–302CrossRefGoogle Scholar
  28. Mesko MF, Picoloto RS, Ferreira LR, Costa VC, Pereira CMP, Colepicolo P, Muller EI, Flores EMM (2015) Ultraviolet radiation combined with microwave-assisted wet digestion of Antarctic seaweeds for further determination of toxic elements by ICP-MS. J Anal At Spectrom 30:260–266CrossRefGoogle Scholar
  29. Papa M, Casoria P, Guida M (2008) Determination of heavy metal in seawater and macroalgae of shorelines of Naples and Ischia Island, Italy. Chem Ecol 24:27–37CrossRefGoogle Scholar
  30. Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quím Nov 27:771–780Google Scholar
  31. Rocha SR, Sanchez-Muniz FJ, Gómez-Juaristi M, Larrea Marín MT (2009) Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J Food Compos Anal 22:330–336CrossRefGoogle Scholar
  32. Shahbazi Y, Ahmadi F, Fakhari F (2016) Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem 192:1060–1067CrossRefPubMedGoogle Scholar
  33. Smith FE, Arsenault EA (1996) Microwave-assisted sample preparation in analytical chemistry. Talanta 43:1207–1268CrossRefPubMedGoogle Scholar
  34. Souza D, Machado SAS, Avaca LA (2003) Voltametria de onda quadrada. Primeira parte: aspectos teóricos Quím Nov 26:81–89Google Scholar
  35. Souza D, Codognoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2004) Voltametria de onda quadrada. Segunda parte: aplicações. Quím Nov 27:790–797Google Scholar
  36. Stengel DB, Macken A, Morrison L, Morley N (2004) Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Mar Poll Bull 48:902–909CrossRefGoogle Scholar
  37. Stoeppler M, Nürnberg HW (1979) Comparative studies on trace metal levels in marine biota: III. Typical levels and accumulation of toxic trace metals in muscle tissue and organs of marine organisms from different European seas. Ecotoxicol Environ Saf 3:335–351CrossRefPubMedGoogle Scholar
  38. Stryjewska E, Krasnodebska B, Biata H, Teperekand J, Rubel S (1994) Heavy metal determination in moss samples from the Kampinos National Park. Chern Anal-Warsaw 39:483–490Google Scholar
  39. Tamayo AIB, Guas AME, Leyte-Vidal JJP, Maccini M (2014) Analytical method for heavy metal determination in algae and turtle eggs from Guanahacabibes protected sea park. J Electrochem Sci Eng 4:145–154Google Scholar
  40. Vasconcelos MTSD, Leal MFC (1997) Speciation of Cu, Pb, Cd and Hg in waters of the Oporto coast in Portugal, using pre-concentration in a chelamine resin column. Anal Chim Acta 353:189–198CrossRefGoogle Scholar
  41. Vasconcelos MTSD, Leal MFC (2001) Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar Chem 74:65–85CrossRefGoogle Scholar
  42. Vasconcelos MTSD, Leal MFC, Van den Berg CMG (2002) Influence of the nature of the exudates released by different marine algae on the growth, trace metal uptake and exudation of Emiliania huxleyi in natural seawater. Mar Chem 77:187–210CrossRefGoogle Scholar
  43. Vidotti EC, Rollemberg MCE (2004) Algas: da economia nos ambientes aquáticos à bioremediação e à química analítica. Quím Nov 27:139–145Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Leandro S. Almeida
    • 1
  • Nivia Streit
    • 1
  • Daniel Costa
    • 1
    • 2
  • Elisa R. Seus
    • 1
    • 2
  • Carlos F. F. Andrade
    • 2
  • Claudio M. P. Pereira
    • 3
  • Pio Colepicolo
    • 4
  • Daiane Dias
    • 1
  1. 1.Escola de Química e AlimentosUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasCapão do LeãoBrazil
  4. 4.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations