Skip to main content
Log in

Effects of light, temperature and stocking density on Halopteris scoparia growth

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Halopteris scoparia (Linnaeus) Sauvageau is a cosmopolitan species, common in warm and cold temperate waters around Europe. Several studies have revealed the importance of the genus Halopteris to the nutraceutical and cosmetics industries due to its biological activities. The overexploitation of this natural resource must be prevented, both with sustainable harvesting and cultivation practices. This study investigated the effect of different stocking densities (SD) on the relative growth rate (RGR) and productivity of H. scoparia. A factorial experiment, using the best SD, was then run to test the combined effects of temperature and irradiance on the in vitro vegetative growth of H. scoparia. Overall, obtained results indicate H. scoparia appears to be a potential target species for aquaculture exploitation. It can grow in a wide range of temperatures (14 to 24 °C) providing irradiance is maintained under 150 μmol photons m−2 s−1 in order to restrain the development of epiphytes. Although promising, the methodologies adopted here require demonstration at larger-scale cultivation conditions, before moving to their effective implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

    Article  Google Scholar 

  • Alagna A, Fernández TV, Terlizzi A, Badalamenti F (2013) Influence of microhabitat on seedling survival and growth of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci 119:119–125

    Article  Google Scholar 

  • Andre G, Pellegrini M, Pellegrini L (2003) Cosmetic or dermatological compositions especially useful as antiaging and antiwrinkle products comprise extracts of Ascophyllum and Helopteris seaweeds. French Patent FR2837386-A1

  • Atlas C (2012) Climate atlas of the archipelagos of the Canary Islands, Madeira and Azores https://www.ipma.pt/export/sites/ipma/bin/docs/publicacoes/atlas.clima.ilhas.iberico.2011.pdf. Accessed 20 Sept 2013

  • Ballesteros E, Martín D, Uriz MJ (1992) Biological activity of extracts from some Mediterranean macrophytes. Bot Mar 35:481–485

    Google Scholar 

  • Buschmann AH, Retamales CA, Figueroa C (1997) Ceramialean epiphytism in an intertidal Gracilaria chilensis (Rhodophyta) bed in southern Chile. J Appl Phycol 9:129–135

    Article  Google Scholar 

  • Carrillo JM, Sansón M (1999) Algas. Hongos y fanerógamas marinas de Las Islas Canarias. Clave analítica. Materiales Didácticos Universitarios. Biología 2. Universidad de la Laguna, La Laguna

  • Chemello R, Milazzo M (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol 140:981–990

    Article  Google Scholar 

  • CLIMAAT (2013) Monthly average solar radiation on horizontal surface – Azores Arquipelago. CLIMAAT and CLIMAAT_II projects. INTERREG IIIB - Archipelagos of the Canary Islands, Madeira and the Azores, Mac / 2.3 / A3 e 03 / Mac / 2.5 / A5. http://www.climaat.angra.uac.pt. Accessed 4 September 2013

  • Costa AC, Avila SP (2001) Macrobenthic mollusc fauna inhabiting Halopteris spp. subtidal fronds in São Miguel Island, Azores. Sci Mar 65:117–126

    Article  Google Scholar 

  • DETRA (2013) Implementation of Remote Sensing Techniques in the Azores—DETRA project. Sea surface temperature 1997–2010. DOP/UAç http://oceano.horta.uac.pt/detra/temperatura.php. Accessed 20 November 2013 2013

  • Draisma SGA, Prud’homme Van Reine WF, Kawai H (2010) A revised classification of the Sphacelariales (Phaeophyceae) inferred from a psbC and rbcL based phylogeny. Eur J Phycol 45:308–326

    Article  CAS  Google Scholar 

  • Fletcher RL (1995) Epiphytism and fouling in Gracilaria cultivation: an overview. J Appl Phycol 7:325–333

    Article  Google Scholar 

  • Flukes EB, Wright JT, Johnson CR, Wernberg T (2015) Phenotypic plasticity and biogeographic variation in physiology of habitat-forming seaweed: response to temperature and nitrate. J Phycol 51:896–909

    Article  CAS  PubMed  Google Scholar 

  • Friedlander M, Levy I (1995) Cultivation of Gracilaria in outdoor tanks and ponds. J Appl Phycol 7:315–324

    Article  Google Scholar 

  • Ganesan M, Sahu N, Eswaran K (2011) Raft culture of Gracilaria edulis in open sea along the south-eastern coast of India. Aquaculture 321:145–151

    Article  Google Scholar 

  • Ganesan M, Selvaraj K, Chithra K, Sirajudeen S (2015) Epiphytism differences in Gelidiella acerosa cultivated with floating rafts and concrete blocks. J Appl Phycol 27:399–412

    Article  Google Scholar 

  • Gibson M (2013) Reproduction in the Sphacelariales: sex is a rare occurrence. Botanica Serbica 37:21–30

    Google Scholar 

  • Guerra-García JM et al. (2010) Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas? Ecol Indicators 10:734–743

    Article  Google Scholar 

  • Guiry MD, Cunningham EM (1984) Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23:357–367

    Article  Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT, Graham M (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves JA (1998) Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166:181–212

    Article  CAS  Google Scholar 

  • Hellio C, Thomas-Guyon H, Culioli G, Piovettt L, Bourgougnon N, le Gal Y (2001) Marine antifoulants from Bifurcaria bifurcata (Phaeophyceae, Cystoseiraceae) and other brown macroalgae. Biofouling 17:189–201

    Article  CAS  Google Scholar 

  • Higgins EM (1931) A cytological investigation of Stypocaulon scoparium (L.), Kütz., with especial reference to the unilocular sporangia. Ann Bot 45:346–353

    Article  Google Scholar 

  • Innes DJ (1984) Genetic differentiation among populations of marine algae. Helgol Meeresunters 38:401–417

    Article  Google Scholar 

  • Larsson C, Axelsson L (1999) Bicarbonate uptake and utilization in marine macroalgae. Eur J Phycol 34:79–86

    Article  Google Scholar 

  • Lawson GW, John DM (1982) The marine algae and coastal environment of tropical West Africa. Beih Nova Hedwigia 27:1–455

    Google Scholar 

  • Lignell Å, Pedersén M (1989) Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. Brit Phycol J 24:83–89

    Article  Google Scholar 

  • López A, Rico M, Rivero A, Suárez de Tangil M (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109

    Article  Google Scholar 

  • Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492

    Article  PubMed  Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • Middelboe AL, Hansen PJ (2007) Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar Biol Res 3:134–144

    Article  Google Scholar 

  • Murillo-Navarro R, Jiménez-Guirado D (2012) Relationships between algal food and gut and gonad conditions in the Mediterranean sea urchin Paracentrotus lividus (Lam.). Mediterr Mar Sci 13:227–238

    Article  Google Scholar 

  • Neto AI (2000a) Ecology and dynamics of two intertidal algal communities on the littoral of the island of São Miguel (Azores). Hydrobiologia 432:135–147

    Article  Google Scholar 

  • Neto AI (2000b) Observations on the biology and ecology of selected macroalgae from the littoral of São Miguel (Azores). Bot Mar 43:483–498

    Article  Google Scholar 

  • Neto AI (2001) Macroalgal species diversity and biomass of subtidal communities of subtidal communities of Miguel (Azores). Helgol Mar Res 55:101–111

    Article  Google Scholar 

  • Novaczek I, Breeman AM, van den Hoek C (1989) Thermal tolerance of Stypocaulon scoparium (Phaeophyta, Sphacelariales) from eastern and western shores of the North Atlantic Ocean. Helgol Meeresunters 43:183–193

    Article  Google Scholar 

  • Orhan I, Wisespongpand P, Atici T, Sener B (2003) Toxicity propensities of some marine and fresh-water algae as their chemical defense. J Fac Pharm 32:19–29

    Google Scholar 

  • Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 252:66–78

    Article  CAS  Google Scholar 

  • Piazzi L, Balata D, Ceccherelli G (2015) Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar Ecol 37:3–41

    Article  Google Scholar 

  • Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Moyano JE, Estacio FJ, García-Adiego EM, García-Gómez JC (2000) The molluscan epifauna of the alga Halopteris scoparia in Southern Spain as a bioindicator of coastal environmental conditions. J Mollusc Stud 66:431–448

    Article  Google Scholar 

  • Silva BL (2009) Estudos do cultivo de algas vermelhas e castanhas em laboratório para aplicação em sistemas de Aquacultura Integrada Multitrófica. Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto

    Google Scholar 

  • Silva B, Pereira R, Abreu MH, Sousa-Pinto I (2010) Evaluation of the brown alga Stypocaulon scoparium as a candidate for Integrated Multi-trophic Aquaculture. In: XX International Seaweed Symposium, Ensenada, Baja California, México, February 22–26 2010. p 98

  • Soler-Membrives A, Rossi S, Munilla T (2011) Feeding ecology of Ammothella longipes (Arthropoda: Pycnogonida) in the Mediterranean Sea: a fatty acid biomarker approach. Estuar Coast Shelf Sci 92:588–597

    Article  CAS  Google Scholar 

  • Stagnol D, Renaud M, Davoult D (2013) Effects of commercial harvesting of intertidal macroalgae on ecosystem biodiversity and functioning. Estuar Coast Shelf Sci 130:99–110

    Article  Google Scholar 

  • Taskin E, Ozturk M, Taskin E, Kurt O (2007) Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr J Biotech 6:2746–2751

    Article  Google Scholar 

  • Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. Hortscience 18:818–822

    Google Scholar 

  • Underwood A (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • van Reine WF P’h (1982) A taxonomic revision of the European Sphacelariaceae (Sphacelariales, Phaeophyceae). Leiden Botanical Series 6. Leiden University Press, Leiden

  • Varisco M, Martín L, Zaixso H, Velasquez C, Vinuesa J (2015) Food and habitat choice in the spider crab Leucippa pentagona (Majoidea: Epialtidae) in Bahía Bustamante, Patagonia, Argentina. Sci Mar 79:107–116

    Article  Google Scholar 

  • Vila M, Garcés E, Masó M (2001) Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean. Aquat Microb Ecol 26:51–60

    Article  Google Scholar 

  • Wallenstein FM, Neto AI, Álvaro NV, Santos CI (2008) Algae-based biotopes of the Azores (Portugal): spatial and seasonal variation. Aquat Ecol 42:547–559

    Article  Google Scholar 

  • Westermeier R, Gómez I, Rivera P (1993) Suspended farming of Gracilaria chilensis (Rhodophyta, Gigartinales) at Cariquilda River, Maullín, Chile. Aquaculture 113:215–229

    Article  Google Scholar 

  • Wong SL, Chang J (2000) Salinity and light effects on growth, photosynthesis, and respiration of Grateloupia filicina (Rhodophyta). Aquaculture 182:387–395

    Article  Google Scholar 

  • Yeon-Shim K, Oh YS, Lee IK (1995) Morphology and life history of Halopteris filicina (Sphacelariales, Phaeophyceae) from Korea. Phycol Res 43(3):137–144

Download references

Acknowledgments

This study was partially supported by AquaImprov (ON.2), Portuguese National Funds, through FCT (Fundação para a Ciência e a Tecnologia), within the project UID/BIA/00329/2013, CIRN (Centro de Investigação de Recursos Naturais, University of the Azores), and CIIMAR (Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal). RFP was supported by a doctoral grant M3.1.2/F/024/2011. The authors are grateful to Pedro Pereira and Natália Cabral (DB, Azores University) for their technical support during the experimental studies. We thank Eva Cacabelos for her support on the seawater collection along the experimental period. Special thanks go to Gustavo Martins and Pedro Raposeiro for their helpful comments on the statistical analysis, and to Afonso Prestes and Francisco Wallenstein for earlier comments on the draft paper. We also thank reviewers for their comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita F. Patarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patarra, R.F., Carreiro, A.S., Lloveras, A.A. et al. Effects of light, temperature and stocking density on Halopteris scoparia growth. J Appl Phycol 29, 405–411 (2017). https://doi.org/10.1007/s10811-016-0933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0933-1

Keywords

Navigation