Journal of Applied Phycology

, Volume 28, Issue 6, pp 3295–3306 | Cite as

The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

  • Marianne EllegaardEmail author
  • Torben Lenau
  • Nina Lundholm
  • Christian Maibohm
  • Søren Michael Mørk Friis
  • Karsten Rottwitt
  • Yanyan Su


Diatoms are ubiquitous organisms in aquatic environments and are estimated to be responsible for 20–25 % of the total global primary production. A unique feature of diatoms is the silica wall, called the frustule. The frustule is characterized by species-specific intricate nanopatterning in the same size range as wavelengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms’ photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well as area of potential application, is UV protection. In this review, we explore the possible adaptive value of the silica frustule with focus on research on the effect of UV radiation on diatoms. We also explore the possible effect of the frustules on UV radiation, from a theoretical, biological, and applied perspective, including recent experimental data on UV transmission of diatom frustules.


UV protection Photonics Photobiology Nanopatterning Diatom 



This work was funded by The Danish Research Council (project ALPHA 12-127569). Sandra Walby helped with laboratory work and Jacob Snebjørn Brøgger Kristensen did preliminary studies on transmission through a spin-coated layer of frustules. Tomas Benzon helped with graphics in Fig. 2. Three anonymous reviewers are thanked for their comments that helped improve the manuscript.


  1. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192CrossRefPubMedGoogle Scholar
  2. Bao Z, Ernst EM, Yoo S, Sandhage KH (2009) Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Adv Mater 21:474–478CrossRefGoogle Scholar
  3. Bozarth A, Maier U-G, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82:195–201CrossRefPubMedGoogle Scholar
  4. Buma AGJ, van Hannen EJ, Veldhuis MJW, Roza L, Gieskes WWC (1995) Monitoring UV-B induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. J Phycol 31:314–321CrossRefGoogle Scholar
  5. Buma AGJ, Zemmelink HJ, Sjollema K, Gieskes WWC (1996) UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. Mar Ecol Prog Ser 142:47–54CrossRefGoogle Scholar
  6. Butcher KSA, Ferris JM Phillips MR (2003) Photoluminescence and cathodoluminescence studies of diatoms—nature’s own nano-porous silica structures. In: Cashion J, Finlayson T, Paganin D, Smith A, Troup G (eds) Proceedings of the 27th A and NZ Condensed Matter and Materials Meeting, 4–7 February. Charles Sturt University, Wagga Wagga, NSW, p 51Google Scholar
  7. Butcher KSA, Ferris JM, Phillips MR, Wintrebert-Fouquet M, Jong Wah JW, Jovanovic N, Vyverman W, Chepurnov VA (2005) A luminescence study of porous diatoms. Mater Sci Eng C25:658–663CrossRefGoogle Scholar
  8. Coleman EA (2011) Polymer additives. In: Kutz M (ed) Applied Plastics Engineering Handbook, William Andrew, pp. 419-428.Google Scholar
  9. Cullen JJ, Lesser MP (1991) Inhibition of photosynthesis by ultraviolet-radiation as a function of dose and dosage rate—results for a marine diatom. Mar Biol 111:183–190CrossRefGoogle Scholar
  10. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82:909CrossRefGoogle Scholar
  11. Davidson AT, Bramich D, Marchant HJ, McMinn A (1994) Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar Biol 199:507–515CrossRefGoogle Scholar
  12. de Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K, Diaz J, Howard DL, Legnini D, Miceli A, McNulty I, Jacobsen CJ, Vogt S (2010) Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. PNAS 107:15676–15680CrossRefPubMedPubMedCentralGoogle Scholar
  13. De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007a) Lens less light focusing with the centric marine diatom Coscinodiscus wailesii. Opt Expr 15:18082–18088CrossRefGoogle Scholar
  14. De Stefano L, De Stefano M, Maddalena P, Moretti L, Rea I, Mocella V, Rendina I (2007b) Playing with light in diatoms: small water organisms with a natural photonic crystal structure. Proc SPIE 6593 Photon Mater Devices Appl II:6593–59313Google Scholar
  15. De Stefano L, Maddalena P, Moretti L, Rea I, Rendina E, De Tommasi M, De Stefano M (2009) Nano-biosilica from marine diatoms: a brand new material for photonic applications. Superlattice Microst 46:84–89CrossRefGoogle Scholar
  16. De Tommasi E, Rea I, Mocella V, Moretti L, De Stefano M, Rendina I, De Stefano L (2010) Multi-wavelength study of light transmitted through a single marine centric diatom. Opt Express 18:12203CrossRefPubMedGoogle Scholar
  17. Delen N, Hooker B (1998) Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach. J Opt Soc Am A 15:857–867CrossRefGoogle Scholar
  18. Depauw FA, Rogato A, d’Alcala MR, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591CrossRefPubMedGoogle Scholar
  19. Di Caprio G, Coppola G, De Stefano L, De Stefano M, Antonucci A, Congestri R, De Tommasi E (2014) Shedding light on diatom photonics by means of digital holography. J Biophotonics 7:341–350:41Google Scholar
  20. Döhler G (1984) Effect of UV-B radiation on the marine diatoms Lauderia annulata and Thalassiosira rotula grown in different salinities. Mar Biol 83:247–253CrossRefGoogle Scholar
  21. Döhler G (1995) Impact of UV-A and UV-B irradiance on the patterns of pigments and N-15-ammonium assimilation of the tropical marine diatom Bellerochea yucatanensis. Bot Mar 38:513–518CrossRefGoogle Scholar
  22. Ferrara MA, Dardano P, De Stefano L, Rea I, Coppola G, Rendina I, Congestri A, Antonucci A, De Stefano M, De Tommasi E (2014) Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from Mother Nature. PLoS ONE 9: e0103750CrossRefGoogle Scholar
  23. Finkel ZV, Kotrc B (2010) Silica use through time: macroevolutionary change in the morphology of the diatom frustule. Geomicrobiol J 27:596–608CrossRefGoogle Scholar
  24. Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B 78:257–260CrossRefGoogle Scholar
  25. Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv Funct Mater 19:926–933CrossRefGoogle Scholar
  26. Gijsman P (2011) Polymer stabilization. In: Kutz M. Applied Plastics Engineering Handbook, William Andrew, pp 375–399Google Scholar
  27. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FA (2009) The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127CrossRefPubMedGoogle Scholar
  28. Goswami B, Choudhury A, Buragohain AK (2012) Luminescence properties of a nanoporous freshwater diatom. Luminescence 27:16–19CrossRefPubMedGoogle Scholar
  29. Guihéneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G (2010) Effect of UV-stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22:629–638CrossRefGoogle Scholar
  30. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063CrossRefPubMedGoogle Scholar
  31. Hamm CE, Merkel R, Springer O, Jurkojk P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefPubMedGoogle Scholar
  32. Hargraves PE, Zhang J, Wang R, Shimiz Y (1993) Growth characteristics of the diatoms Pseudonitzschia pungens and P. fraudulenta exposed to ultraviolet radiation. Hydrobiologia 269:207–212Google Scholar
  33. Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafañe VE (1996) Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101CrossRefGoogle Scholar
  34. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbüchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hessen DO, Frigstad H, Faerovig PJ, Wojewodzic MW, Leu E (2012) UV radiation and its effects on P-uptake in arctic diatoms. J Exp Mar Biol Ecol 411:45–51CrossRefGoogle Scholar
  36. Holzinger A, Lütz C (2006) Algae and UV radiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207CrossRefPubMedGoogle Scholar
  37. Hsu SH, Paoletti C, Torres M, Ritchie RJ, Larkum AWD, Grillet C (2012) Light transmission of the marine diatom Coscinodiscus wailesii. Proc. SPIE 8339, Bioinspiration, Biomimetics, and Bioreplication 2012, 83390F. doi: 10.1117/12.915044
  38. Ingalls AE, Whitehead K, Bridoux MC (2010) Tinted windows: the presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochim Cosmochim Acta 74:104–115CrossRefGoogle Scholar
  39. Jeffrey SW, MacTavish HS, Dunlap WC, Vesk M, Groenewoud K (1999) Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar Ecol Prog Ser 189:35–51Google Scholar
  40. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2:2103–2112CrossRefPubMedGoogle Scholar
  41. Johnsen S, Sosik H (2004) Shedding light on the light in the ocean. Oceanus Mag 43Google Scholar
  42. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341CrossRefGoogle Scholar
  43. Kieu K, Li C, Fang Y, Cohoon G, Herrera OD, Hildebrand M, Sandhage KH, Norwood RA (2014) Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Opt Express 22:15992–15999CrossRefPubMedGoogle Scholar
  44. Lang Y, del Monte F, Rodriguez BJ, Dockery P, Finn DP, Pandit A (2013) Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci Rep 3:3205. doi: 10.1038/srep03205 PubMedPubMedCentralGoogle Scholar
  45. Lavoie M, Raven JA, Levassaur M (2016) Energy cost and putative benefits of cellular mechanisms modulating buoyancy in a flagellate marine phytoplankton. J Phycol 52:239–251CrossRefPubMedGoogle Scholar
  46. LeDuff P, Roesijadi G, Rorrera GL (2016) Micro-photoluminescence of single living diatom cells. Luminescence. doi: 10.1002/bio.3118
  47. Leu E, Wangberg SA, Wulff A, Falk-Petersen S, Orbaek JB, Hessen DO (2006) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antaretica var. borealis). J Exp Mar Biol Ecol 337:65–81CrossRefGoogle Scholar
  48. Levithan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124CrossRefGoogle Scholar
  49. Litchman E, Neale PJ (2005) UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad. Mar Ecol Prog Ser 300:53–62CrossRefGoogle Scholar
  50. Lohmann M, Döhler G, Huckenbeck N, Verdini S (1998) Effects of UV radiation of different wavebands on pigmentation, 15N-ammonium uptake, amino acid pools and adenylate contents of marine diatoms. Mar Biol 130:501–507CrossRefGoogle Scholar
  51. Maibohm C, Friis SMM, Ellegaard M, Rottwitt K (2015a) Interference patterns and extinction ratio of the diatom Coscinodiscus granii. Opt Express 23:9543–9548CrossRefPubMedGoogle Scholar
  52. Maibohm C, Friis SMM, Su Y, Rottwitt K (2015b) Comparing optical properties of different species of diatoms. Proc SPIE 9360. doi: 10.1117/12.2078822 Google Scholar
  53. Maibohm C, Nielsen JH, Rottwitt K (2015c) Light interaction with nano-structured diatom frustule, from UV-A to NIR. MSR Adv. doi: 10.1557/adv.2015.15 Google Scholar
  54. Mazumder N, Gogoi R, Kalita RD, Ahmed GA, Buragohain AK (2010) Luminescence studies of fresh water diatom frustules. Indian J Phys 84:665–669CrossRefGoogle Scholar
  55. Medlin LK (2002) Why silica or better yet why not silica? Speculations as to why the diatoms utilize silica as their cell wall material. Diatom Res 17:453–459CrossRefGoogle Scholar
  56. Milligan AJ, Morel FMM (2002) A proton buffering role for silica in diatoms. Science 297:1848–1850CrossRefPubMedGoogle Scholar
  57. Nahon S, Charles F, Lantoine F, Vétion G, Escoubeyrou K, Desmalades M, Pruski AM (2010) Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom Skeletonema costatum. J Exp Mar Biol Ecol 383:164–170CrossRefGoogle Scholar
  58. Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cyc 9:359–372CrossRefGoogle Scholar
  59. Noyes J, Sumper M, Vukusic P (2008) Light manipulation in a marine diatom. J Mat Res 23:3229–3235CrossRefGoogle Scholar
  60. Ottesen P. (2011) Processing and characterization of diatoms for light harvesting materials on solar cells. Masters thesis, Norwegian University of Science and TechnologyGoogle Scholar
  61. Pan Z, Lerch SJL, Xu L, Li X, Chuang Y-J, Howe JY, Mahurin SM, Dai S, Hildebrand M (2014) Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. Sci Rep 4:6117CrossRefPubMedGoogle Scholar
  62. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353CrossRefPubMedGoogle Scholar
  63. Parkinson J, Gordon R (1999) Beyond micromachining: the potential of diatoms. Trends Biotechnol 17:190–196CrossRefPubMedGoogle Scholar
  64. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207CrossRefGoogle Scholar
  65. Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61CrossRefGoogle Scholar
  66. Rech M, Mouget JL, Morant-Manceau A, Rosa P, Tremblin G (2005) Long-term acclimation to UV radiation: effects on growth, photosynthesis and carbonic anhydrase activity in marine diatoms. Bot Mar 48:407–420CrossRefGoogle Scholar
  67. Reizopoulou S, Santas P, Danielidis D, Hader DP, Santas R (2000) UV effects on invertebrate and diatom assemblages of Greece. J Photochem Photobiol B 56:172–180CrossRefPubMedGoogle Scholar
  68. Rijstenbil JW (2005) UV- and salinity-induced oxidative effects in the marine diatom Cylindrotheca closterium during simulated emersion. Mar Biol 147:1063–1073CrossRefGoogle Scholar
  69. Romann J, Valmalette J-C, Røyset A, Einarsrud M-A (2015) Optical properties of single diatom frustule revealed by confocal microspectroscopy. Opt Lett 40:740–743CrossRefPubMedGoogle Scholar
  70. Sandhage KH, Dickerson MB, Huseman PM, Caranna MA, Clifton JD, Bull TA, Heibel TJ, Overton WR, Schoenwaelder MEA (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv Mat 14:429–433CrossRefGoogle Scholar
  71. Scholz B, Rua A, Liebezeit G (2014) Effects of UV radiation on five marine microphytobenthic Wadden sea diatoms isolated from the Solthorn tidal flat (Lower Saxony, southern North Sea)—part I: growth and antioxidative defence strategies. Eur J Phycol 49:68–82CrossRefGoogle Scholar
  72. Townley HE, Woon KL, Payne FP, White-Cooper H, Parker AP (2007) Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. J Nanotechnol 18:295101CrossRefGoogle Scholar
  73. van Eynde E, Tytgat T, Smits M, Verbruggen SW, Hauchecorne B, Lenaerts S (2013) Biotemplated diatom silica–titania materials for air purification. Photochem Photobiol Sci 12:690–695CrossRefPubMedGoogle Scholar
  74. Vernet M (2000) Effects of UV radiation on the physiology and ecology of marine phytoplankton. In: De Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 237–278CrossRefGoogle Scholar
  75. Viji S, Anbazhagi M, Ponpandian N, Mangalaraj D, Jeyanthi S, Santhanam P, Devi AS, Viswanathan C (2014) Diatom-based label-free optical biosensor for biomolecules. Appl Biochem Biotechnol 174:1166–1173CrossRefPubMedGoogle Scholar
  76. Villafañe VE, Helbling EW, Holm-Hansen O, Chalker BE (1995) Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J Plankton Res 17:2295–2306CrossRefGoogle Scholar
  77. Wang Y, Pan J, Cai J, Zhang D (2012) Floating assembly of diatoms Coscinodiscus sp. microshells. Biochem Biophys Res Commun 420:1–5CrossRefPubMedGoogle Scholar
  78. Waring J, Underwood GJC, Baker NR (2006) Impact of elevated UV-B radiation on photosynthetic electron transport, primary productivity and carbon allocation in estuarine epipelic diatoms. Plant Cell Environ 29:521–534CrossRefPubMedGoogle Scholar
  79. Wu XJ, Gao G, Giordano M, Gao KS (2012) Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol 180:279–290CrossRefGoogle Scholar
  80. Wu Y, Campbell DA, Gao K (2014) Faster recovery of a diatom from UV damage under ocean acidification. J Photochem Photobiol B 140:249–254CrossRefPubMedGoogle Scholar
  81. Xu J, Gao K (2010) Use of UV-A energy for photosynthesis in the red macroalga Gracilaria lemaneiformis. Photochem Photobiol 86:580–585Google Scholar
  82. Yamanaka S, Yano R, Usami H, Hayashida N, Ohguchi M, Takeda H, Yoshino K (2008) Optical properties of diatom silica frustule with special reference to blue light. J Appl Phys 103:074701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
  2. 2.Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.The Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen KDenmark
  4. 4.Department of Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations