Journal of Applied Phycology

, Volume 28, Issue 5, pp 3151–3158 | Cite as

Bioprospecting for lipophilic-like components of five Phaeophyta macroalgae from the Portuguese coast

  • Sónia A. O. SantosEmail author
  • Cátia S. D. Oliveira
  • Stéphanie S. Trindade
  • Maria H. Abreu
  • Sílvia S. M. Rocha
  • Armando J. D. Silvestre


Lipophilic compounds present in dichloromethane extracts of five brown macroalgae from the Portuguese coast were analyzed by gas chromatography-mass spectrometry (GC-MS). Their dicarboxylic acids, long-chain aliphatic alcohols, and monoglyceride profile are reported for the first time. Additionally, other new compounds were also first reported: 24-methylene-cholesterol in Himanthalia elongata, Laminaria ochroleuca, and Undaria pinnatifida; desmosterol and brassicasterol in H. elongata, L. ochroleuca, Sargassum muticum, and U. pinnatifida; fucosterol and campesterol in S. muticum; and cholest-5-en-3-ol-(3β)-3-phenyl-2-propenoate in Cystoseira tamariscifolia. Brown macroalgae dichloromethane extracts are mainly composed of fatty acids (463.4–3089.0 mg kg−1 of dry material) and sterols (75.5–442.7 mg kg−1 of dry material). High amounts of polyunsaturated fatty acids were found, with the ω-6/ω-3 ratios of all species lower than 3. Cystoseira tamariscifolia, H. elongata, and S. muticum showed to be also promising sources of fucosterol. These results seem to uphold the incorporation of these macroalgae in a more balanced diet, as well as their use in the nutraceutical industry, as long as they are coupled with sustainable management of these natural resources.


Phaeophyceae Cystoseira tamariscifolia Himanthalia elongata Laminaria ochroleuca Sargassum muticum Undaria pinnatifida Lipophilic compounds Sterols 



The authors are grateful to ALGAplus-Produção e comercialização de algas e seus derivados, Lda. for providing the macroalgae samples.

The authors wish to thank FCT-Portugal (Fundação para a Ciência e Tecnologia) and POPH/FSE for the postdoctoral grants to S. A. O. Santos (SFRH/BPD/84226/2012). This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013) and QOPNA Research Unit (FCT UID/QUI/00062/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.


  1. Abreu MH, Pereira R, Sassi J-F (2014) Marine algae and the global food industry. In: Pereira L, Neto JM (eds) Marine algae bodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton, pp 300–319Google Scholar
  2. Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828CrossRefPubMedGoogle Scholar
  3. Araújo R, Bárbara I, Tibaldo M, Tibaldo M, Berecibar E, Tapia PD, Pereira R, Santos R, Pinto IS (2009) Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot Mar 52:24–46CrossRefGoogle Scholar
  4. Boulom S, Robertson J, Hamid N, Hamid N, Ma Q, Lu J (2014) Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem 161:261–269CrossRefPubMedGoogle Scholar
  5. Caamal-Fuentes E, Chale-Dzul J, Moo-Puc R, Freile-Pelegrin Y, Robledo D (2013) Bioprospecting of brown seaweed (Ochrophyta) from the Yucatan Peninsula: cytotoxic, antiproliferative, and antiprotozoal activities. J Appl Phycol 26:1009–1017CrossRefGoogle Scholar
  6. Chen B, McClements DJ, Decker EA (2013) Design of foods with bioactive lipids for improved health. Annu Rev Food Sci Technol 4:35–56CrossRefPubMedGoogle Scholar
  7. Conde E, Moure A, Domínguez H (2014) Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. J Appl Phycol 27:957–964CrossRefGoogle Scholar
  8. Escurriol V, Cofán M, Serra M, Bulló M, Basora J, Sala-Salvadó J, Corella D, Zazpe I, Martínez-González MA, Ruiz-Gutiérrez V, Estruch R, Ros E (2009) Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet. Eur J Nutr 48:373–382CrossRefPubMedGoogle Scholar
  9. Francisco C, Combaut G, Teste J, Maume BF (1977) Étude des sterols d’algues brunes du genre Cystoseira. Biochim Biophys Acta - Lipids Lipid Metab 487:115–121Google Scholar
  10. Freire CSR, Silvestre AJD, Neto CP, Cavaleiro JAS (2002) Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 56:372–379Google Scholar
  11. Hargrove JL, Greenspan P, Hartle DK (2004) Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med 229:215–226Google Scholar
  12. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692CrossRefPubMedGoogle Scholar
  13. Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot Mar 40:25–28CrossRefGoogle Scholar
  14. Jeong W-S, Lachance PA (2001) Phytosterols and fatty acids in fig (Ficus carica, var. mission) fruit and tree components. J Food Sci 66:278–281CrossRefGoogle Scholar
  15. Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757CrossRefGoogle Scholar
  16. Lopes G, Sousa C, Bernardo J, Andrade PB, Valentão P, Ferreres F, Mouga T (2011) Sterol profiles in 18 macroalgae of the Portuguese coast. J Phycol 47:1210–1218CrossRefPubMedGoogle Scholar
  17. Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100CrossRefPubMedPubMedCentralGoogle Scholar
  18. Marongiu B, Piras A, Porcedda S, Falconieri D, Maxia A, Frau MA, Gonçalves MJ, Cavaleiro C, Salgueiro L (2013) Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat Prod Res 27:1521–1527CrossRefPubMedGoogle Scholar
  19. McCauley JI, Meyer BJ, Winberg PC, Ranson M, Skropeta D (2014) Selecting Australian marine macroalgae based on the fatty acid composition and anti-inflammatory activity. J Appl Phycol 27:2111–2121CrossRefGoogle Scholar
  20. Monroig Ó, Tocher D, Navarro J (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11:3998–4018CrossRefPubMedPubMedCentralGoogle Scholar
  21. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966CrossRefGoogle Scholar
  22. Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39CrossRefGoogle Scholar
  23. GISSI – Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354:447–455.Google Scholar
  24. Racette SB, Lin X, Lefevre M, Spearie CA, Most MM, Ma L, Ostlund RE (2010) Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am J Clin Nutr 91:32–38CrossRefPubMedGoogle Scholar
  25. Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TAP, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes AMP, Duarte AC (2015) Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem 183:197–207CrossRefPubMedGoogle Scholar
  26. Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P (2004a) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444CrossRefGoogle Scholar
  27. Sánchez-Machado DI, López-Hernández J, Paseiro-Losada P, López-Cervantes J (2004b) An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatogr 18:183–190CrossRefPubMedGoogle Scholar
  28. Santos SAO, Villaverde JJ, Sousa AF, Coelho JFJ, Neto CP, Silvestre AJD (2013) Phenolic composition and antioxidant activity of industrial cork by-products. Ind Crops Prod 47:262–269CrossRefGoogle Scholar
  29. Santos SAO, Vilela C, Freire CSR, Abreu MH, Rocha SM, Silvestre AJD (2015) Chlorophyta and Rhodophyta macroalgae: a source of health promoting phytochemicals. Food Chem 183:122–128CrossRefPubMedGoogle Scholar
  30. Silvério FO, Barbosa LCA, Silvestre AJD, Piló-Veloso D, Gomide JL (2007) Comparative study on the chemical composition of lipophilic fractions from three wood tissues of Eucalyptus species by gas chromatography-mass spectrometry analysis. J Wood Sci 53:533–540CrossRefGoogle Scholar
  31. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501CrossRefPubMedGoogle Scholar
  32. Touati R, Santos SAO, Rocha SM, Belhamel K, Silvestre AJD (2015) Retama sphaerocarpa: an unexploited and rich source of alkaloids, unsaturated fatty acids and other valuable phytochemicals. Ind Crops Prod 69:238–243CrossRefGoogle Scholar
  33. Vilela C, Santos SAO, Oliveira L, Camacho JF, Cordeiro N, Freire CRS, Silvestre AJD (2013) The ripe pulp of Mangifera indica L.: a rich source of phytosterols and other lipophilic phytochemicals. Food Res Int 54:1535–1540CrossRefGoogle Scholar
  34. Vilela C, Santos SAO, Villaverde JJ, Oliveira L, Nunes A, Cordeiro N, Freire CSR, Silvestre AJD (2014) Lipophilic phytochemicals from banana fruits of several Musa species. Food Chem 162:247–252CrossRefPubMedGoogle Scholar
  35. Vizetto-Duarte C, Pereira H, Bruno de Sousa C, Pilar Rauter A, Albericio F, Custódio L, Barreira L, Varela J (2015) Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Nat Prod Res 29:1264–1270CrossRefPubMedGoogle Scholar
  36. Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289CrossRefPubMedGoogle Scholar
  37. Yang FQ, Feng K, Zhao J, Li SP (2009) Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J Pharm Biomed Anal 49:1172–1178CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sónia A. O. Santos
    • 1
    Email author
  • Cátia S. D. Oliveira
    • 1
  • Stéphanie S. Trindade
    • 1
  • Maria H. Abreu
    • 2
  • Sílvia S. M. Rocha
    • 3
  • Armando J. D. Silvestre
    • 1
  1. 1.CICECO-Aveiro Institute of Materials, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.ALGAplus-Prod e comerc. de algas e seus derivados, Lda.IlhavoPortugal
  3. 3.QOPNA, Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations