Advertisement

Journal of Applied Phycology

, Volume 28, Issue 5, pp 3135–3150 | Cite as

Tracing seaweeds as mineral sources for farm-animals

  • Ana R. J. Cabrita
  • Margarida R. G. Maia
  • Hugo M. Oliveira
  • Isabel Sousa-Pinto
  • Agostinho A. Almeida
  • Edgar Pinto
  • António J. M. Fonseca
Article

Abstract

This study characterized the mineral composition of 15 common Portuguese seaweed (green, brown, and red) species. Total measured mineral content ranged from 10.9 g kg−1 dry matter (DM) in Gracilaria vermiculophylla to 71.0 g kg−1 DM in Codium adhaerens, calcium being the mineral generally found in higher amounts. Overall, the results suggest that seaweeds have great potential as mineral sources for animal feeding, but a great variability between species was observed regarding their mineral profile. Compared to common animal feed ingredients, the studied seaweeds can be considered as good sources of calcium, magnesium, iron, iodine, copper, manganese, and selenium but are poor sources of phosphorous and zinc. The maximum level of dietary inclusion will be strongly dependent on the mineral profile of the seaweeds. Depending on the seaweed, the upper level of inclusion in poultry and swine diets may reach more than 40 %. The high iodine content of studied seaweeds limits their use in diets for horses, and, to a lesser extent, for ruminants. This work constitutes a paramount contribution regarding the use of seaweeds as mineral sources in animal diets, allowing a more precise choice of the algae species and level of inclusion to be used, thus assuring animal health and strengthening the seaweed industry through this underexploited application field.

Keywords

Animal feed Level of inclusion Minerals Seaweeds 

Notes

Acknowledgments

Margarida R.G. Maia and Hugo M. Oliveira thank Fundação para a Ciência e Tecnologia (FCT) for the postdoctoral grants (SFRH/BPD/70176/2010 and SFRH/BPD/75065/2010, respectively). This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT) through projects EXPL/CVT-NUT/0286/2013 - FCOMP-01-0124-FEDER-041111 and UID/ QUI/50006/2013 - POCI/01/0145/FERDER/007265 (LAQV). To all financing sources the authors are greatly indebted. The authors also acknowledge Sílvia Azevedo (ICBAS-UP) for the valuable technical assistance.

References

  1. Amata IA (2013) Chromium in livestock nutrition: a review. Glo Adv Res J Agric Sci 2(12):289–306, Special Anniversary Review Issue Google Scholar
  2. Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotox Environ Saf 58:117–125CrossRefGoogle Scholar
  3. Andrade S, Medina MH, Moffett JW, Correa JA (2006) Cadmium − copper antagonism in seaweeds inhabiting coastal areas affected by copper mine waste disposals. Environ Sci Technol 40:4382–4387CrossRefPubMedGoogle Scholar
  4. Anke M (1986) Arsenic. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2. Academic Press, Orlando, pp 347–372CrossRefGoogle Scholar
  5. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  6. Apaydin G, Aylıkcı V, Cengiz E, Saydam M, Küp N, Tıraşoğlu E (2010) Analysis of metal contents of seaweed (Ulva lactuca) from Istambul, Turkey by EDXRF. Turkish J Fish Aquatic Sci 10:215–220Google Scholar
  7. ARC (1980) The nutrient requirements of ruminant livestock Agricultural Research Council:351Google Scholar
  8. Balboa EM, Gallego-Fábrega C, Moure A, Domínguez H (2015) Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain. J Appl Phycol. 1-11. doi: 10.1007/s10811-015-0727-x
  9. Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568S–580SGoogle Scholar
  10. Burtin P (2003) Nutritional value of seaweeds. Elec J Env Agricult Food Chem Title 2:498–503Google Scholar
  11. Carillo S, Rios VH, Calvo C, Carranco NE, Casas M, Perez-Gil F (2012) N-3 fatty acid content in eggs laid by hens with marine algae and sardine oil and stored at different times and temperatures. J Appl Phycol 24:593–599CrossRefGoogle Scholar
  12. Chancho MJR, Sánchez JFL, Rubio R (2010) Occurrence of arsenic species in the seagrass Posidonia oceanica and in the marine algae Lessonia nigrescens and Durvillaea antarctica. J Appl Phycol 22:465–472CrossRefGoogle Scholar
  13. Chojnacka K (2008) Using biosorption to enrich the biomass of seaweeds from the Baltic Sea with microelements to produce mineral feed supplement for livestock. Biochem Eng J 39:246–257CrossRefGoogle Scholar
  14. Clarke EGC, Clarke ML (1975) Veterinary toxicology, 3rd edn. Williams & Wilkins Co., BaltimoreGoogle Scholar
  15. Cortinhas CS, Botaro BG, Sucupira MCA, Renno FP, Santos MV (2010) Antioxidant enzymes and somatic cell count in dairy cows fed with organic source of zinc, copper and selenium. Livest Sci 127:84–87CrossRefGoogle Scholar
  16. Devi GK, Thirumaran G, Manivannan K, Anantharaman P (2009) Element composition of certain Seaweeds from Gulf of Mannar Marine Biosphere reserve; Southeast Coast of India. World J Dairy Food Sci 4:46–55Google Scholar
  17. Diniz GS, Barbarino E, Lourenço SO (2012) On the chemical profile of marine organisms from coastal subtropical environments: gross composition and nitrogen-to-protein conversion factors. In: Marcelli M (ed) Oceanography. InTech, Rijeka, pp 297–320Google Scholar
  18. Domingues B, Abreu MH, Sousa-Pinto I (2015) On the bioremediation efficiency of Mastocarpus stellatus (Stackhouse) Guiry, in an integrated multi-trophic aquaculture system. J Appl Phyc 27:1289–1295Google Scholar
  19. El Din NGS, El-Sherif ZM (2012) Nutritional value of some algae from the north-western Mediterranean coast of Egypt. J Appl Phycol 24:613–626CrossRefGoogle Scholar
  20. El-Deek AA, Brikka MA (2009) Nutritional and biological evaluation of marine seaweed as a feedstuff and as a pellet binder in poultry diet. Int J Poultry Sci 8:875–881CrossRefGoogle Scholar
  21. El-Said GF, El-Sikaily A (2013) Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ Monit Assess 185:6089–6099CrossRefPubMedGoogle Scholar
  22. Evans FD, Critchley AT (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899CrossRefGoogle Scholar
  23. FEDNA (2010) Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3rd edn. Fundación Española para el Desarrollo de la Nutrición Animal, MadridGoogle Scholar
  24. Fleurence J, Gutbier G, Mabeaul S, Leray C (1994) Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6:527–532CrossRefGoogle Scholar
  25. Fries L (1982) Vanadium an essential element for some marine macroalgae. Planta 154:393–396CrossRefPubMedGoogle Scholar
  26. Hansen SL, Spears JW (2009) Bioaccessibility of iron from soil is increased by silage fermentation. J Dairy Sci 92:2896–2905CrossRefPubMedGoogle Scholar
  27. Hille R, Nishino T, Bittner F (2011) Molybdenum enzymes in higher organisms. Coordin Chem Rev 255:1179–1205CrossRefGoogle Scholar
  28. Hoekstra W, Lewis P, Phillips P, Grummer R (1956) The relationship of parakeratosis, supplemental calcium and zinc to the zinc content of certain body components of swine. J Anim Sci 15:752–764CrossRefGoogle Scholar
  29. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52:1273–1280CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hu M, Yang Y, Martin JM, Yin K, Harrison PJ (1996) Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton. Mar Environ Res 44:225–231CrossRefGoogle Scholar
  31. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hwang YO, Park SG, Park GY, Choi SM, Kim MY (2010) Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea. Food Addit Contam Part B Surveill 3:7–13CrossRefPubMedGoogle Scholar
  33. Jayasekera R, Rossbach M (1996) Use of seaweeds for monitoring trace elements in coastal waters. Environ Geochem Health 18:63–68CrossRefPubMedGoogle Scholar
  34. Julshamn K, Dahl L, Eckhoff K (2001) Determination of iodine in seafood by inductively coupled plasma/mass spectrometry. J AOAC Int 84:1976–1983PubMedGoogle Scholar
  35. Kendel M, Couzinet-Mossion A, Viau M, Fleurence J, Barnathan G, Wielgosz-Collin G (2013) Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J Appl Phycol 25:425–432CrossRefGoogle Scholar
  36. Khairy HM, El-Shafay SM (2013) Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 55:435–452CrossRefGoogle Scholar
  37. Kinley RD, Fredeen AH (2015) In vitro evaluation of feeding North Atlantic stormtoss seaweeds on ruminal digestion. J Appl Phycol 27:2387–2393CrossRefGoogle Scholar
  38. Krishnaiah D, Sarbatly R, Prasad DMR, Bono A (2008) Mineral content of some seaweeds from Sabah’s South China Sea. Asia J Sci Res 1:166–170CrossRefGoogle Scholar
  39. Li YX, Li W, Wu J, Xu LC, Su QH, Xiong X (2007) Contribution of additives Cu to its accumulation in pig feces: study in Beijing and Fuxin of China. J Environ Sci (China) 19:610–615CrossRefGoogle Scholar
  40. Liu L, Heinrich M, Myers SP, Dworjanyn SA (2012) Towards a better understanding of medicinal uses of the brown seaweed genus Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 142:591–619CrossRefPubMedGoogle Scholar
  41. López-Alonso M (2012) Trace minerals and livestock: not too much not too little. ISRN Vet Sci 2012:18. doi: 10.5402/2012/704825 CrossRefGoogle Scholar
  42. Luecke RW (1984) Domestic animals in the elucidation of zinc’s role in nutrition. Fed Proc 43:2823–2828PubMedGoogle Scholar
  43. Machado L, Kinley RD, Magnusson M, Nys R, Tomkins NW (2015) The potential of macroalgae for beef production systems in Northern Australia. J Appl Phycol 27:2001–2005CrossRefGoogle Scholar
  44. Maher W, Baldwin S, Deaker M, Irving M (1992) Characteristics of selenium in Australian marine biota. Appl Organomet Chem 4:419–437CrossRefGoogle Scholar
  45. Malea P, Haritonidis S (1999) Seasonal accumulation of metals by red alga Gracilaria verrucosa (Huds.) Papens. from Thermaikos Gulf, Greece. J Appl Phycol 11:503–509CrossRefGoogle Scholar
  46. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336CrossRefGoogle Scholar
  47. Martens H, Schweigel M (2000) Pathophysiology of grass tetany and other hypomagnesemias. Implications for clinical management. Vet Clin North Am Food Anim Pract 16:339–368CrossRefPubMedGoogle Scholar
  48. Mayland HF (1994) Selenium in plant and animal nutrition. In: Frankenberger WTJ, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 29–45Google Scholar
  49. McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014) Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157:1380–1392CrossRefPubMedPubMedCentralGoogle Scholar
  50. Merck (2010) The Merck veterinary manual. 10th edn.,Google Scholar
  51. Michalak I, Chojnacka K, Dobrzański Z, Górecki H, Zielińska A, Korczyński M, Opaliński S (2011) Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. J Anim Physiol Annim Nutr 95:374–387CrossRefGoogle Scholar
  52. Miller WJ (1970) Zinc nutrition of cattle: a review. J Dairy Sci 53:1123–1135CrossRefPubMedGoogle Scholar
  53. Mora ML, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303:139–149CrossRefGoogle Scholar
  54. Murugaiyan K, Narasimman S (2013) Biochemical and mineral contents of selected green seaweeds from Gulf of Mannar coastal region, TamilNadu, India. Int J Res Plant Sci 3:96–100Google Scholar
  55. Nascimento A, Coelho-Gomes C, Barbarino E, Lourenço SO (2014) Temporal variations of the chemical composition of three seaweeds in two tropical coastal environments. Open J Mar Sci 4:118–139CrossRefGoogle Scholar
  56. Newland H, Ullerey J, Hoefer J, Luecke R (1958) The relationship of dietary calcium to zinc metabolism in pigs. J Anim Sci 17:886–892CrossRefGoogle Scholar
  57. NRC (1989) Nutrient requirements of horses. Fifth Revised Edition. National Academy Press, WashingtonGoogle Scholar
  58. NRC (1994) Nutrient requirements of poultry. Ninth Revised Edition. National Academy Press, WashingtonGoogle Scholar
  59. NRC (1998) Nutrient requirements of swine. Tenth revised edition, National Academy Press, WashingtonGoogle Scholar
  60. NRC (2001) National Research Council, nutrient requirements of dairy cattle: seventh revised edition. The National Academies Press, WashingtonGoogle Scholar
  61. NRC (2005) Mineral tolerance of animals. Second revised edition edn. National Academy of SciencesGoogle Scholar
  62. Prather TA, Miller DD (1992) Calcium carbonate depresses iron bioavailability in rats more than calcium sulfate or sodium carbonate. J Nutr 122:327–332PubMedGoogle Scholar
  63. Rey-Crespo F, López-Alonso M, Miranda M (2014) The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle. Animal 8:580–586CrossRefPubMedGoogle Scholar
  64. Rice DL, Lapointe BE (1981) Experimental outdoor studies with Ulva fasciata Delile. II Trace metal chemistry. J Exp Mar Biol Ecol 54:1–11CrossRefGoogle Scholar
  65. Riosmena-Rodríguez R, Talavera-Sáenz A, Acosta-Vargas B, Gardner SC (2010) Heavy metals dynamics in seaweeds and seagrasses in Bahía Magdalena, B.C.S., México. J Appl Phycol 22:283–291CrossRefGoogle Scholar
  66. Rodríguez-Castañeda AP, Sánchez-Rodríguez I, Shumilin EN, Sapozhnikov D (2006) Element concentrations in some species of seaweeds from La Paz Bay and La Paz Lagoon, south-western Baja California, Mexico. J Appl Phycol 18:399–408CrossRefGoogle Scholar
  67. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26CrossRefGoogle Scholar
  68. Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko SI (1978) Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk. Mar Biol 47:243–250CrossRefGoogle Scholar
  69. Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373CrossRefGoogle Scholar
  70. Sivertsen T, Løvberg KE (2014) Seasonal and individual variation in hepatic copper concentrations in a flock of Norwegian Dala sheep. Small Rumin Res 116:57–65CrossRefGoogle Scholar
  71. Smith A, Rosea SP, Wellsa RG, Pirgozlieva V (2000) Effect of excess dietary sodium, potassium, calcium and phosphorus on excreta moisture of laying hens. Br Poult Sci 41:598–607CrossRefPubMedGoogle Scholar
  72. Smith JL, Summers G, Wong R (2010) Nutrient and heavy metal content of edible seaweeds in New Zealand. N Z J Crop Hortic Sci 38:19–28CrossRefGoogle Scholar
  73. Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222Google Scholar
  74. Stoeppler M (2004) Arsenic. In: Nonmetals PA, Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment: occurrence, analysis and biological relevance, vol 3, 2nd edn. Wiley-VCH, Weinheim, pp 1321–1364CrossRefGoogle Scholar
  75. Suttle NF (2010) Mineral nutrition of livestock. 4th Edition edn., Wallingford, UKGoogle Scholar
  76. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  77. Thilsing-Hansen T, Jorgensen R (2001) Serum calcium response following oral zinc oxide administrations in dairy cows. Acta Vet Scand 42:271–278CrossRefPubMedPubMedCentralGoogle Scholar
  78. Turner A, Turner D, Braungardt C (2013) Biomonitoring of thallium availability in two estuaries of southwest England. Mar Pollut Bull 69:172–177CrossRefPubMedGoogle Scholar
  79. Urbano MG, Goñi I (2002) Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 76:281–286CrossRefGoogle Scholar
  80. Ventura MR, Castañon JIR, McNab JM (1994) Nutritional value of seaweed (Ulva rigida) for poultry. Anim Feed Sci Technol 49:87–92CrossRefGoogle Scholar
  81. Verhaeghe E (2007) Etude des mecanismes d’accumulation de l’iode chez l’algue brune Laminaria digitata et chez les mammifères. Université Paris Sud, ParisGoogle Scholar
  82. Wedekind KJ, Titgemeyer EC, Twardock AR, Baker DH (1991) Phosphorus, but not calcium, affects manganese absorption and turnover in chicks. J Nutr 121:1776–1786PubMedGoogle Scholar
  83. Yamamoto T, Fujita T, Ishibashi M (1970) Chemical studies on the seaweeds (25). Vanadium and titanium contents in seaweeds. Rec Oceanogr Works Jpn 10:125Google Scholar
  84. Yan X, Zheng L, Chen H, Lin W, Zhang W (2004) Enriched accumulation and biotransformation of selenium in the edible seaweed Laminaria japonica. J Agric Food Chem 52:6460–6464CrossRefPubMedGoogle Scholar
  85. Żbikowski R, Szefer P, Latała A (2006) Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ Pollut 143:435–448CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ana R. J. Cabrita
    • 1
  • Margarida R. G. Maia
    • 1
    • 2
  • Hugo M. Oliveira
    • 1
  • Isabel Sousa-Pinto
    • 3
  • Agostinho A. Almeida
    • 4
  • Edgar Pinto
    • 4
  • António J. M. Fonseca
    • 1
  1. 1.REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal
  2. 2.REQUIMTE, LAQV, DGAOT, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.Coastal Biodiversity, CIIMAR, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.REQUIMTE, LAQV, Departamento de Ciências Químicas, Laboratório de Química Aplicada, Faculdade de FarmáciaUniversidade do PortoPortoPortugal

Personalised recommendations